Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Altern Med ; 15: 390, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511466

RESUMO

BACKGROUND: Numerous plants from have been investigated due to their anti-inflammatory activity and, among then, extracts or components of ginger (Zingiber officinale Roscoe) and rosemary (Rosmarinus officinalis L.), sources of polyphenolic compounds. 6-gingerol from ginger rhizome and carnosic acid and carnosol from rosemary leaves present anti-tumor, anti-inflammatory and antioxidant activities. However, the evaluation of the mechanisms of action of these and other plant extracts is limited due to their high hydrophobicity. Dimethylsulfoxide (DMSO) is commonly used as a vehicle of liposoluble materials to mammalian cells in vitro, presenting enhanced cell penetration. Liposomes are also able to efficiently deliver agents to mammalian cells, being capable to incorporate in their structure not only hydrophobic molecules, but also hydrophilic and amphiphilic compounds. Another strategy is based on the use of Pluronic F-68, a biocompatible low-foaming, non-ionic surfactant, to disperse hydrophobic components. Here, these three delivery approaches were compared to analyze their influence on the in vitro anti-inflammatory effects of ginger and rosemary extracts, at different concentrations, on primary mammalian cells and on a tumor cell line. METHODS: Ginger and rosemary extracts free of organic solvents were obtained by supercritical fluid extraction and dispersed in DMSO, Pluronic F-68 or liposomes, in variable concentrations. Cell viability, production of inflammatory mediators and nitric oxide (NO) release were measured in vitro on J774 cell line and murine macrophages primary culture stimulated with bacterial lipopolysaccharide and interferon-γ after being exposed or not to these extracts. RESULTS: Ginger and rosemary extracts obtained by supercritical CO2 extraction inhibited the production of pro-inflammatory cytokines and the release of NO by peritoneal macrophages and J774 cells. The delivery vehicles influenced the anti-inflammatory effects. Comparatively, the ginger extract showed the highest anti-inflammatory activity on the tumor cell line. Controversially, rosemary extract dispersed on DMSO induced a more significant IL-1 and TNF-α reduction than ginger extract in primary macrophages. CONCLUSIONS: Amongst the tested delivery vehicles, DMSO was the most suitable, presenting reduced cytotoxicity, followed by Pluronic F-68 and liposomes, provably due to differences in their form of absorption, distribution and cellular metabolism. Co-administration of liposomes and plant extracts may cause death of macrophages cells and induction of NO production. It can be concluded that some of the beneficial effects attributed to extracts of ginger and rosemary may be associated with the inhibition of inflammatory mediators due to their high antioxidant activity. However, these effects were influenced by the type of delivery vehicle.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rosmarinus/química , Zingiber officinale/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular Tumoral , Cromatografia com Fluido Supercrítico , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Lipossomos/química , Macrófagos/imunologia , Camundongos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
2.
Appl Biochem Biotechnol ; 134(2): 155-63, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16943636

RESUMO

The influence of extremely low-frequency (ELF) electromagnetic fields on Escherichia coli cultures in submerse fermentation was studied. The fermentation processes were carried out recycling the culture medium externally through a stainless steel tube inserted in a magnetic field generator (solenoid). The exposure time and electromagnetic induction were varied in a range of 1 to 12 h and 0.010 to 0.10 T, respectively, according to a Box-Wilson Central Composite Designs of face centered with five central points. Growth of E. coli could be altered (stimulated or inhibited) under magnetic fieldinduced effects. E. coli cultures exposed at 0.1 T during 6.5 h exhibited changes in its viability compared to unexposed cells, which was 100 times higher than the control. The magnetic field generator associated with the cellular suspension recycle is a new way of magnetic treatment in fermentation processes and could be appropriate to industrial scale up.


Assuntos
Campos Eletromagnéticos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos da radiação , Microbiologia Industrial , Relação Dose-Resposta à Radiação , Microbiologia Industrial/métodos
3.
J Pharm Pharmacol ; 57(1): 23-30, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15638989

RESUMO

The primary goal of this study was the production of liposomes encapsulating kanamycin for drug administration by inhalation. The selected drug is indicated for multiresistant tuberculosis, and administration through inhalation allows both local delivery of the drug to the lungs and systemic therapy. The ethanol injection method used for the liposome production is easily scaled up and is characterized by simplicity and low cost. Vesicles were prepared using different lipid compositions, including hydrogenated soybean phosphatidylcholine and cholesterol (SPC/Chol), egg phosphatidylcholine and cholesterol (EPC/Chol), distearoyl phosphatidylcholine and cholesterol (DSPC/Chol), distearoyl phosphatidylcholine, dimyristoyl phosphatidylethanolamine and cholesterol (DSPC/DMPE/Chol), dipalmitoyl phosphatidylcholine and cholesterol (DPPC/Chol) and dipalmitoyl phosphatidylcholine, dipalmitoyl phosphatidylglycerol and cholesterol (DPPC/DPPG/Chol). The effects of different operational conditions for vesicle production and drug encapsulation were evaluated, aiming at a compromise between final process cost and suitable vesicle characteristics. The best performance concerning drug incorporation was achieved with the DSPC/Chol system, although its production cost was considerably larger than that of the natural lipids formulations. Encapsulation efficiencies up to 63% and final drug to lipid molar ratios up to 0.1 were obtained for SPC/Chol vesicles presenting mean diameters of 132 nm incubated at 60 degrees C with the drug for 60 min at an initial drug-to-lipid molar ratio of 0.16.


Assuntos
Antibióticos Antituberculose/administração & dosagem , Canamicina/administração & dosagem , Tuberculose/tratamento farmacológico , Administração por Inalação , Antibióticos Antituberculose/uso terapêutico , Química Farmacêutica , Colesterol , Preparações de Ação Retardada , Composição de Medicamentos , Estabilidade de Medicamentos , Etanol , Canamicina/uso terapêutico , Lipossomos , Octanóis , Tamanho da Partícula , Fosfatidilcolinas , Soluções , Solventes , Tuberculose/microbiologia
4.
Braz. j. microbiol ; 38(4): 780-784, Oct.-Dec. 2007. graf, ilus
Artigo em Inglês | LILACS | ID: lil-473498

RESUMO

Six fungi strains (M. anisopliae 3935, 4516, 4819, PL57, PL43 and M. flavoviride CG291) were studied regarding their ability to produce an anticancer indolizidine alkaloid. The culture process was carried out in Shaken flask at 26ºC and 200 rpm using three different culture medium containing oat meal extract supplemented with glucose and DL-lysine or Czapek culture medium. The mycelial extracts produced by Metarhizium spp. cultures were directly submitted to electrospray ionization mass spectrometry (ESI-MS) analysis and the highest alkaloid concentration (approximately, 6 mg.L-1) was reached when M. anisopliae 3935 was tested.


O presente trabalho teve como objetivo avaliar diferentes cepas dos fungos M. anisopliae e M. flavoviride ao respeito da sua capacidade de produzir um alcalóide anticancerígeno, por fermentação em frascos erlenmeyers usando três meios de cultura distintos. De seis cepas testadas, quatro foram capazes de produzir o composto de interesse, M. anisopliae 3935, PL57 e PL43 e M. flavoviride CG291, sendo que a maior concentração de alcalóide (aproximadamente, 6 mg.L-1) foi produzida pelo M. anisopliae 3935, contendo um meio constituído de extrato de farinha de aveia, glicose e DL-lisina a 26ºC e 200 rpm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA