Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 310(3): L263-70, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637637

RESUMO

S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o(-)) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o(-) cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions.


Assuntos
Aldeído Oxirredutases/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Aldeído Oxirredutases/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Transdução de Sinais/fisiologia
2.
Am J Respir Cell Mol Biol ; 52(1): 37-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24922346

RESUMO

Exposure to hypoxia elicits an increase in minute ventilation that diminishes during continued exposure (roll-off). Brainstem N-methyl-D-aspartate receptors (NMDARs) and neuronal nitric oxide synthase (nNOS) contribute to the initial hypoxia-induced increases in minute ventilation. Roll-off is regulated by platelet-derived growth factor receptor-ß (PDGFR-ß) and S-nitrosoglutathione (GSNO) reductase (GSNOR). S-nitrosylation inhibits activities of NMDAR and nNOS, but enhances GSNOR activity. The importance of S-nitrosylation in the hypoxic ventilatory response is unknown. This study confirms that ventilatory roll-off is virtually absent in female GSNOR(+/-) and GSNO(-/-) mice, and evaluated the location of GSNOR in female mouse brainstem, and temporal changes in GSNOR activity, protein expression, and S-nitrosylation status of GSNOR, NMDAR (1, 2A, 2B), nNOS, and PDGFR-ß during hypoxic challenge. GSNOR-positive neurons were present throughout the brainstem, including the nucleus tractus solitarius. Protein abundances for GSNOR, nNOS, all NMDAR subunits and PDGFR-ß were not altered by hypoxia. GSNOR activity and S-nitrosylation status temporally increased with hypoxia. In addition, nNOS S-nitrosylation increased with 3 and 15 minutes of hypoxia. Changes in NMDAR S-nitrosylation were detected in NMDAR 2B at 15 minutes of hypoxia. No hypoxia-induced changes in PDGFR-ß S-nitrosylation were detected. However, PDGFR-ß phosphorylation increased in the brainstems of wild-type mice during hypoxic exposure (consistent with roll-off), whereas it did not rise in GSNOR(+/-) mice (consistent with lack of roll-off). These data suggest that: (1) S-nitrosylation events regulate hypoxic ventilatory response; (2) increases in S-nitrosylation of NMDAR 2B, nNOS, and GSNOR may contribute to ventilatory roll-off; and (3) GSNOR regulates PDGFR-ß phosphorylation.


Assuntos
Tronco Encefálico/metabolismo , Hipóxia/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , S-Nitrosoglutationa/metabolismo , Álcool Desidrogenase , Animais , Tronco Encefálico/patologia , Feminino , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Hipóxia/genética , Hipóxia/patologia , Camundongos , Camundongos Knockout , Neurônios/patologia , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Fosforilação/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Mol Microbiol ; 84(1): 181-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22409773

RESUMO

The fluid mosaic model has recently been amended to account for the existence of membrane domains enriched in certain phospholipids. In rod-shaped bacteria, the anionic phospholipid cardiolipin is enriched at the cell poles but its role in the morphogenesis of the filamentous bacterium Streptomyces coelicolor is unknown. It was impossible to delete clsA (cardiolipin synthase; SCO1389) unless complemented by a second copy of clsA elsewhere in the chromosome. When placed under the control of an inducible promoter, clsA expression, phospholipid profile and morphogenesis became inducer dependent. TLC analysis of phospholipid showed altered profiles upon depletion of clsA expression. Analysis of cardiolipin by mass spectrometry showed two distinct cardiolipin envelopes that reflected differences in acyl chain length; the level of the larger cardiolipin envelope was reduced in concert with clsA expression. ClsA-EGFP did not localize to specific locations, but cardiolipin itself showed enrichment at hyphal tips, branch points and anucleate regions. Quantitative analysis of hyphal dimensions showed that the mycelial architecture and the erection of aerial hyphae were affected by the expression of clsA. Overexpression of clsA resulted in weakened hyphal tips, misshaped aerial hyphae and anucleate spores and demonstrates that cardiolipin synthesis is a requirement for morphogenesis in Streptomyces.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/crescimento & desenvolvimento , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteínas de Bactérias/genética , Cardiolipinas/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Proteínas de Membrana/genética , Mutação , Regiões Promotoras Genéticas , Streptomyces coelicolor/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética
4.
Cytometry A ; 83(9): 780-93, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23813736

RESUMO

The fundamental theory of Förster resonance energy transfer (FRET) was established in the 1940s. Its great power was only realized in the past 20 years after different techniques were developed and applied to biological experiments. This success was made possible by the availability of suitable fluorescent probes, advanced optics, detectors, microscopy instrumentation, and analytical tools. Combined with state-of-the-art microscopy and spectroscopy, FRET imaging allows scientists to study a variety of phenomena that produce changes in molecular proximity, thereby leading to many significant findings in the life sciences. In this review, we outline various FRET imaging techniques and their strengths and limitations; we also provide a biological model to demonstrate how to investigate protein-protein interactions in living cells using both intensity- and fluorescence lifetime-based FRET microscopy methods.


Assuntos
Transferência Ressonante de Energia de Fluorescência/instrumentação , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Mapeamento de Interação de Proteínas/instrumentação , Mapeamento de Interação de Proteínas/métodos , Fluorescência , Corantes Fluorescentes , Proteínas/química , Análise de Célula Única/métodos
5.
Appl Environ Microbiol ; 74(21): 6774-81, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791015

RESUMO

Bacteria from the genus Streptomyces are among the most complex of all prokaryotes; not only do they grow as a complex mycelium, they also differentiate to form aerial hyphae before developing further to form spore chains. This developmental heterogeneity of streptomycete microcolonies makes studying the dynamic processes that contribute to growth and development a challenging procedure. As a result, in order to study the mechanisms that underpin streptomycete growth, we have developed a system for studying hyphal extension, protein trafficking, and sporulation by time-lapse microscopy. Through the use of time-lapse microscopy we have demonstrated that Streptomyces coelicolor germ tubes undergo a temporary arrest in their growth when in close proximity to sibling extension sites. Following germination, in this system, hyphae extended at a rate of approximately 20 microm h(-1), which was not significantly different from the rate at which the apical ring of the cytokinetic protein FtsZ progressed along extending hyphae through a spiraling movement. Although we were able to generate movies for streptomycete sporulation, we were unable to do so for either the erection of aerial hyphae or the early stages of sporulation. Despite this, it was possible to demonstrate an arrest of aerial hyphal development that we suggest is through the depolymerization of FtsZ-enhanced green fluorescent protein (GFP). Consequently, the imaging system reported here provides a system that allows the dynamic movement of GFP-tagged proteins involved in growth and development of S. coelicolor to be tracked and their role in cytokinesis to be characterized during the streptomycete life cycle.


Assuntos
Microscopia de Vídeo/métodos , Streptomyces coelicolor/citologia , Streptomyces coelicolor/metabolismo , Fusão Gênica Artificial , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
J Biomed Opt ; 18(6): 060501, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23748699

RESUMO

A method to investigate the metabolic activity of intracellular tryptophan (TRP) and coenzyme-NADH using three-photon (3P) fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET) is presented. Through systematic analysis of FLIM data from tumorigenic and nontumorigenic cells, a statistically significant decrease in the fluorescence lifetime of TRP was observed in response to the increase in protein-bound NADH as cells were treated with glucose. The results demonstrate the potential use of 3P-FLIM-FRET as a tool for label-free screening of the change in metabolic flux occurring in human diseases or other clinical conditions.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , NAD/química , Triptofano/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Diagnóstico por Imagem , Glucose/química , Células HeLa , Humanos , Mitocôndrias/metabolismo , Óptica e Fotônica , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA