Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Circ Res ; 120(8): 1263-1275, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28179432

RESUMO

RATIONALE: Lymphatic vessel formation and function constitutes a physiologically and pathophysiologically important process, but its genetic control is not well understood. OBJECTIVE: Here, we identify the secreted Polydom/Svep1 protein as essential for the formation of the lymphatic vasculature. We analyzed mutants in mice and zebrafish to gain insight into the role of Polydom/Svep1 in the lymphangiogenic process. METHODS AND RESULTS: Phenotypic analysis of zebrafish polydom/svep1 mutants showed a decrease in venous and lymphovenous sprouting, which leads to an increased number of intersegmental arteries. A reduced number of primordial lymphatic cells populated the horizontal myoseptum region but failed to migrate dorsally or ventrally, resulting in severe reduction of the lymphatic trunk vasculature. Corresponding mutants in the mouse Polydom/Svep1 gene showed normal egression of Prox-1+ cells from the cardinal vein at E10.5, but at E12.5, the tight association between the cardinal vein and lymphatic endothelial cells at the first lymphovenous contact site was abnormal. Furthermore, mesenteric lymphatic structures at E18.5 failed to undergo remodeling events in mutants and lacked lymphatic valves. In both fish and mouse embryos, the expression of the gene suggests a nonendothelial and noncell autonomous mechanism. CONCLUSIONS: Our data identify zebrafish and mouse Polydom/Svep1 as essential extracellular factors for lymphangiogenesis. Expression of the respective genes by mesenchymal cells in intimate proximity with venous and lymphatic endothelial cells is required for sprouting and migratory events in zebrafish and for remodeling events of the lymphatic intraluminal valves in mouse embryos.


Assuntos
Células Endoteliais/metabolismo , Evolução Molecular , Linfangiogênese , Vasos Linfáticos/metabolismo , Proteínas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular , Comunicação Celular , Movimento Celular , Células Endoteliais/patologia , Endotélio Linfático/anormalidades , Endotélio Linfático/metabolismo , Endotélio Linfático/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Vasos Linfáticos/anormalidades , Vasos Linfáticos/fisiopatologia , Mesoderma/metabolismo , Mutação , Fenótipo , Proteínas/genética , Transdução de Sinais , Fatores de Tempo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Development ; 141(6): 1239-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24523457

RESUMO

The VEGFC/VEGFR3 signaling pathway is essential for lymphangiogenesis (the formation of lymphatic vessels from pre-existing vasculature) during embryonic development, tissue regeneration and tumor progression. The recently identified secreted protein CCBE1 is indispensible for lymphangiogenesis during development. The role of CCBE1 orthologs is highly conserved in zebrafish, mice and humans with mutations in CCBE1 causing generalized lymphatic dysplasia and lymphedema (Hennekam syndrome). To date, the mechanism by which CCBE1 acts remains unknown. Here, we find that ccbe1 genetically interacts with both vegfc and vegfr3 in zebrafish. In the embryo, phenotypes driven by increased Vegfc are suppressed in the absence of Ccbe1, and Vegfc-driven sprouting is enhanced by local Ccbe1 overexpression. Moreover, Vegfc- and Vegfr3-dependent Erk signaling is impaired in the absence of Ccbe1. Finally, CCBE1 is capable of upregulating the levels of fully processed, mature VEGFC in vitro and the overexpression of mature VEGFC rescues ccbe1 loss-of-function phenotypes in zebrafish. Taken together, these data identify Ccbe1 as a crucial component of the Vegfc/Vegfr3 pathway in the embryo.


Assuntos
Linfangiogênese/fisiologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Linfangiogênese/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Dados de Sequência Molecular , Mutação Puntual , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Development ; 140(13): 2776-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23698350

RESUMO

The formation and lumenization of blood vessels has been studied in some detail, but there is little understanding of the morphogenetic mechanisms by which endothelial cells (ECs) forming large caliber vessels aggregate, align themselves and finally form a lumen that can support blood flow. Here, we focus on the development of the zebrafish common cardinal veins (CCVs), which collect all the blood from the embryo and transport it back to the heart. We show that the angioblasts that eventually form the definitive CCVs become specified as a separate population distinct from the angioblasts that form the lateral dorsal aortae. The subsequent development of the CCVs represents a novel mechanism of vessel formation, during which the ECs delaminate and align along the inner surface of an existing luminal space. Thereby, the CCVs are initially established as open-ended endothelial tubes, which extend as single EC sheets along the flow routes of the circulating blood and eventually enclose the entire lumen in a process that we term 'lumen ensheathment'. Furthermore, we found that the initial delamination of the ECs as well as the directional migration within the EC sheet depend on Cadherin 5 function. By contrast, EC proliferation within the growing CCV is controlled by Vascular endothelial growth factor C, which is provided by circulating erythrocytes. Our findings not only identify a novel mechanism of vascular lumen formation, but also suggest a new form of developmental crosstalk between hematopoietic and endothelial cell lineages.


Assuntos
Embrião não Mamífero/metabolismo , Veias/embriologia , Veias/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Circulation ; 129(19): 1962-71, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24552833

RESUMO

BACKGROUND: Hennekam lymphangiectasia-lymphedema syndrome (Online Mendelian Inheritance in Man 235510) is a rare autosomal recessive disease, which is associated with mutations in the CCBE1 gene. Because of the striking phenotypic similarity of embryos lacking either the Ccbe1 gene or the lymphangiogenic growth factor Vegfc gene, we searched for collagen- and calcium-binding epidermal growth factor domains 1 (CCBE1) interactions with the vascular endothelial growth factor-C (VEGF-C) growth factor signaling pathway, which is critical in embryonic and adult lymphangiogenesis. METHODS AND RESULTS: By analyzing VEGF-C produced by CCBE1-transfected cells, we found that, whereas CCBE1 itself does not process VEGF-C, it promotes proteolytic cleavage of the otherwise poorly active 29/31-kDa form of VEGF-C by the A disintegrin and metalloprotease with thrombospondin motifs-3 protease, resulting in the mature 21/23-kDa form of VEGF-C, which induces increased VEGF-C receptor signaling. Adeno-associated viral vector-mediated transduction of CCBE1 into mouse skeletal muscle enhanced lymphangiogenesis and angiogenesis induced by adeno-associated viral vector-VEGF-C. CONCLUSIONS: These results identify A disintegrin and metalloprotease with thrombospondin motifs-3 as a VEGF-C-activating protease and reveal a novel type of regulation of a vascular growth factor by a protein that enhances its proteolytic cleavage and activation. The results suggest that CCBE1 is a potential therapeutic tool for the modulation of lymphangiogenesis and angiogenesis in a variety of diseases that involve the lymphatic system, such as lymphedema or lymphatic metastasis.


Assuntos
Proteínas ADAM/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linfangiogênese/fisiologia , Pró-Colágeno N-Endopeptidase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas ADAMTS , Adenoviridae/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Animais , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Neovascularização Fisiológica/fisiologia , Transfecção , Proteínas Supressoras de Tumor/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Blood ; 118(4): 1154-62, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21566091

RESUMO

Notch signaling plays a central role in cell-fate determination, and its role in lateral inhibition in angiogenic sprouting is well established. However, the role of Notch signaling in lymphangiogenesis, the growth of lymphatic vessels, is poorly understood. Here we demonstrate Notch pathway activity in lymphatic endothelial cells (LECs), as well as induction of delta-like ligand 4 (Dll4) and Notch target genes on stimulation with VEGF or VEGF-C. Suppression of Notch signaling by a soluble form of Dll4 (Dll4-Fc) synergized with VEGF in inducing LEC sprouting in 3-dimensional (3D) fibrin gel assays. Expression of Dll4-Fc in adult mouse ears promoted lymphangiogenesis, which was augmented by coexpressing VEGF. Lymphangiogenesis triggered by Notch inhibition was suppressed by a monoclonal VEGFR-2 Ab as well as soluble VEGF and VEGF-C/VEGF-D ligand traps. LECs transduced with Dll4 preferentially adopted the tip cell position over nontransduced cells in 3D sprouting assays, suggesting an analogous role for Dll4/Notch in lymphatic and blood vessel sprouting. These results indicate that the Notch pathway controls lymphatic endothelial quiescence, and explain why LECs are poorly responsive to VEGF compared with VEGF-C. Understanding the role of the Notch pathway in lymphangiogenesis provides further insight for the therapeutic manipulation of the lymphatic vessels.


Assuntos
Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Western Blotting , Células Endoteliais/metabolismo , Imunofluorescência , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Circ Res ; 109(5): 486-91, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21778431

RESUMO

RATIONALE: Collagen- and calcium-binding EGF domains 1 (CCBE1) has been associated with Hennekam syndrome, in which patients have lymphedema, lymphangiectasias, and other cardiovascular anomalies. Insight into the molecular role of CCBE1 is completely lacking, and mouse models for the disease do not exist. OBJECTIVE: CCBE1 deficient mice were generated to understand the function of CCBE1 in cardiovascular development, and CCBE1 recombinant protein was used in both in vivo and in vitro settings to gain insight into the molecular function of CCBE1. METHODS AND RESULTS: Phenotypic analysis of murine Ccbe1 mutant embryos showed a complete lack of definitive lymphatic structures, even though Prox1(+) lymphatic endothelial cells get specified within the cardinal vein. Mutant mice die prenatally. Proximity ligation assays indicate that vascular endothelial growth factor receptor 3 activation appears unaltered in mutants. Human CCBE1 protein binds to components of the extracellular matrix in vitro, and CCBE1 protein strongly enhances vascular endothelial growth factor-C-mediated lymphangiogenesis in a corneal micropocket assay. CONCLUSIONS: Our data identify CCBE1 as a factor critically required for budding and migration of Prox-1(+) lymphatic endothelial cells from the cardinal vein. CCBE1 probably exerts these effects through binding to components of the extracellular matrix. CCBE1 has little lymphangiogenic effect on its own but dramatically enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Thus, our data suggest CCBE1 to be essential but not sufficient for lymphangiogenesis.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Endotélio Linfático/irrigação sanguínea , Endotélio Linfático/metabolismo , Linfangiogênese/fisiologia , Vasos Linfáticos/embriologia , Vasos Linfáticos/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Córnea/irrigação sanguínea , Córnea/citologia , Córnea/metabolismo , Endotélio Linfático/citologia , Humanos , Linfangiogênese/genética , Camundongos , Camundongos Knockout , Ligação Proteica/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/fisiologia
7.
Nat Cancer ; 4(10): 1474-1490, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783807

RESUMO

Acute myeloid leukemia (AML), the most frequent leukemia in adults, is driven by recurrent somatically acquired genetic lesions in a restricted number of genes. Treatment with tyrosine kinase inhibitors has demonstrated that targeting of prevalent FMS-related receptor tyrosine kinase 3 (FLT3) gain-of-function mutations can provide significant survival benefits for patients, although the efficacy of FLT3 inhibitors in eliminating FLT3-mutated clones is variable. We identified a T cell receptor (TCR) reactive to the recurrent D835Y driver mutation in the FLT3 tyrosine kinase domain (TCRFLT3D/Y). TCRFLT3D/Y-redirected T cells selectively eliminated primary human AML cells harboring the FLT3D835Y mutation in vitro and in vivo. TCRFLT3D/Y cells rejected both CD34+ and CD34- AML in mice engrafted with primary leukemia from patients, reaching minimal residual disease-negative levels, and eliminated primary CD34+ AML leukemia-propagating cells in vivo. Thus, T cells targeting a single shared mutation can provide efficient immunotherapy toward selective elimination of clonally involved primary AML cells in vivo.


Assuntos
Leucemia Mieloide Aguda , Proteínas Tirosina Quinases , Adulto , Humanos , Animais , Camundongos , Mutação , Proteínas Tirosina Quinases/genética , Mutação com Ganho de Função , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T/genética , Tirosina Quinase 3 Semelhante a fms/genética
8.
Circulation ; 121(12): 1413-22, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20231530

RESUMO

BACKGROUND: Lymphatic network and chemokine-mediated signals are essential for leukocyte traffic during the proximal steps of alloimmune response. We aimed to determine the role of lymphatic vessels and their principal growth signaling pathway, vascular endothelial growth factor (VEGF)-C/D/VEGFR-3, during acute and chronic rejection in cardiac allografts. METHODS AND RESULTS: Analysis of heterotopically transplanted rat cardiac allografts showed that chronic rejection increased VEGF-C(+) inflammatory cell and hyaluronan receptor-1 (LYVE-1)(+) lymphatic vessel density. Allograft lymphatic vessels were VEGFR-3(+), contained antigen-presenting cells, and produced dendritic cell chemokine CCL21. Experiments with VEGFR-3/LacZ mice or mice with green fluorescent protein-positive bone marrow cells as cardiac allograft recipients showed that allograft lymphatic vessels originated almost exclusively from donor cells. Intraportal adenoviral VEGFR-3-Ig (Ad.VEGFR-3-Ig/VEGF-C/D-Trap) perfusion was used to inhibit VEGF-C/D/VEGFR-3 signaling. Recipient treatment with Ad.VEGFR-3-Ig prolonged rat cardiac allograft survival. Ad.VEGFR-3-Ig did not affect allograft lymphangiogenesis but was linked to reduced CCL21 production and CD8(+) effector cell entry in the allograft. Concomitantly, Ad.VEGFR-3-Ig reduced OX62(+) dendritic cell recruitment and increased transcription factor Foxp3 expression in the spleen. In separate experiments, treatment with a neutralizing monoclonal VEGFR-3 antibody reduced arteriosclerosis, the number of activated lymphatic vessels expressing VEGFR-3 and CCL21, and graft-infiltrating CD4(+) T cells in chronically rejecting mouse cardiac allografts. CONCLUSIONS: These results show that VEGFR-3 participates in immune cell traffic from peripheral tissues to secondary lymphoid organs by regulating allograft lymphatic vessel CCL21 production and suggest VEGFR-3 inhibition as a novel lymphatic vessel-targeted immunomodulatory therapy for cardiac allograft rejection and arteriosclerosis.


Assuntos
Arteriosclerose/prevenção & controle , Quimiocina CCL21/biossíntese , Transplante de Coração/imunologia , Imunomodulação/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Células Apresentadoras de Antígenos , Arteriosclerose/tratamento farmacológico , Movimento Celular/imunologia , Rejeição de Enxerto/imunologia , Camundongos , Camundongos Knockout , Ratos , Transdução de Sinais/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/imunologia
9.
Nat Med ; 10(9): 974-81, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15322537

RESUMO

Lymphatic vessels are essential for the removal of interstitial fluid and prevention of tissue edema. Lymphatic capillaries lack associated mural cells, and collecting lymphatic vessels have valves, which prevent lymph backflow. In lymphedema-distichiasis (LD), lymphatic vessel function fails because of mutations affecting the forkhead transcription factor FOXC2. We report that Foxc2(-/-) mice show abnormal lymphatic vascular patterning, increased pericyte investment of lymphatic vessels, agenesis of valves and lymphatic dysfunction. In addition, an abnormally large proportion of skin lymphatic vessels was covered with smooth muscle cells in individuals with LD and in mice heterozygous for Foxc2 and for the gene encoding lymphatic endothelial receptor, Vegfr3 (also known as Flt4). Our data show that Foxc2 is essential for the morphogenesis of lymphatic valves and the establishment of a pericyte-free lymphatic capillary network and that it cooperates with Vegfr3 in the latter process. Our results indicate that an abnormal interaction between the lymphatic endothelial cells and pericytes, as well as valve defects, underlie the pathogenesis of LD.


Assuntos
Proteínas de Ligação a DNA/genética , Linfangiogênese/genética , Anormalidades Linfáticas/patologia , Vasos Linfáticos/patologia , Linfedema/patologia , Fatores de Transcrição/genética , Animais , Northern Blotting , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Azul Evans , Fatores de Transcrição Forkhead , Humanos , Imuno-Histoquímica , Hibridização In Situ , Anormalidades Linfáticas/genética , Linfedema/genética , Camundongos , Camundongos Mutantes , Microscopia de Fluorescência , Mutação/genética , Pericitos/patologia , RNA/genética , Fatores de Transcrição/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Stud Health Technol Inform ; 282: 259-270, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34085974

RESUMO

The purpose of this study was to review the qualitative literature on cognitive accessibility in a digital environment and areas of inquiry for future qualitative research in this context. The focus of this literature review was to identify qualitative research in the cognitive accessibility field and how commonly this term is mentioned in qualitative research articles. In this study, a literature review was conducted on selected qualitative research studies performed globally related to cognitive accessibility. This literature review analysed through meta-synthesis. Based on the results of the literature review, an understanding of existing qualitative research was obtained in the cognitive accessibility field, as well as topics for further qualitative research in the cognitive accessibility field.


Assuntos
Cognição , Pesquisa Qualitativa
11.
Circ Res ; 103(9): 1018-26, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18757827

RESUMO

Vascular endothelial growth factor (VEGF)-B is poorly angiogenic but prominently expressed in metabolically highly active tissues, including the heart. We produced mice expressing a cardiac-specific VEGF-B transgene via the alpha-myosin heavy chain promoter. Surprisingly, the hearts of the VEGF-B transgenic mice showed concentric cardiac hypertrophy without significant changes in heart function. The cardiac hypertrophy was attributable to an increased size of the cardiomyocytes. Blood capillary size was increased, whereas the number of blood vessels per cell nucleus remained unchanged. Despite the cardiac hypertrophy, the transgenic mice had lower heart rate and blood pressure than their littermates, and they responded similarly to angiotensin II-induced hypertension, confirming that the hypertrophy does not compromise heart function. Interestingly, the isolated transgenic hearts had less cardiomyocyte damage after ischemia. Significantly increased ceramide and decreased triglyceride levels were found in the transgenic hearts. This was associated with structural changes and eventual lysis of mitochondria, resulting in accumulation of intracellular vacuoles in cardiomyocytes and increased death of the transgenic mice, apparently because of mitochondrial lipotoxicity in the heart. These results suggest that VEGF-B regulates lipid metabolism, an unexpected function for an angiogenic growth factor.


Assuntos
Cardiomegalia/metabolismo , Cardiomiopatias/metabolismo , Metabolismo dos Lipídeos , Miocárdio/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda , Angiotensina II , Animais , Pressão Sanguínea , Capilares/metabolismo , Capilares/patologia , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Tamanho Celular , Ceramidas/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Frequência Cardíaca , Humanos , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Neovascularização Fisiológica , Oxirredução , Regiões Promotoras Genéticas , Pele/irrigação sanguínea , Pele/metabolismo , Fatores de Tempo , Triglicerídeos/metabolismo , Regulação para Cima , Fator B de Crescimento do Endotélio Vascular/genética , Miosinas Ventriculares/genética
12.
Circ Res ; 100(10): 1460-7, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17478734

RESUMO

Vascular endothelial growth factor (VEGF)-C and VEGF-D require proteolytic cleavage of the carboxy terminal silk-homology domain for activation. To study the functions of the VEGF-C propeptides, we engineered a chimeric growth factor protein, VEGF-CAC, composed of the amino- and carboxy-terminal propeptides of VEGF-C fused to the receptor-activating core domain of VEGF. Like VEGF-C, VEGF-CAC underwent proteolytic cleavage, and like VEGF, it bound to and activated VEGF receptor-1 and VEGF receptor-2, but not the VEGF-C receptor VEGF receptor-3. VEGF-CAC also bound to neuropilins in a heparin-dependent manner. Strikingly, when VEGF-CAC was expressed via an adenovirus vector in the ear skin of immunodeficient mice, it proved to be a more potent inducer of capillary angiogenesis than VEGF. The VEGF-CAC-induced vessels differed greatly from those induced by VEGF, as they formed a very dense and fine network of pericyte and basement membrane-covered capillaries that were functional, as shown by lectin perfusion experiments. VEGF-CAC could prove useful in proangiogenic therapies in patients experiencing tissue ischemia.


Assuntos
Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator C de Crescimento do Endotélio Vascular/farmacologia , Adenoviridae/genética , Animais , Membrana Basal/efeitos dos fármacos , Capilares/efeitos dos fármacos , Capilares/fisiologia , Células Cultivadas , Humanos , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/fisiologia , Camundongos , Pericitos/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/química , Fator C de Crescimento do Endotélio Vascular/metabolismo
13.
FASEB J ; 20(9): 1462-72, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16816121

RESUMO

Lymphatic vascular development is regulated by vascular endothelial growth factor receptor-3 (VEGFR-3), which is activated by its ligands VEGF-C and VEGF-D. Neuropilin-2 (NP2), known to be involved in neuronal development, has also been implicated to play a role in lymphangiogenesis. We aimed to elucidate the mechanism by which NP2 is involved in lymphatic endothelial cell signaling. By in vitro binding studies we found that both VEGF-C and VEGF-D interact with NP2, VEGF-C in a heparin-independent and VEGF-D in a heparin-dependent manner. We also mapped the domains of VEGF-C and NP2 required for their binding. The functional importance of the interaction of NP2 with the lymphangiogenic growth factors was demonstrated by cointernalization of NP2 along with VEGFR-3 in endocytic vesicles of lymphatic endothelial cells upon stimulation with VEGF-C or VEGF-D. NP2 also interacted with VEGFR-3 in coprecipitation studies. Our results show that NP2 is directly involved in an active signaling complex with the key regulators of lymphangiogenesis and thus suggest a mechanism by which NP2 functions in the development of the lymphatic vasculature.


Assuntos
Neovascularização Fisiológica , Neuropilina-2/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Primers do DNA , Drosophila , Endotélio Vascular/fisiologia , Heparina/fisiologia , Humanos , Rim , Sistema Linfático/fisiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Suínos , Fator C de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/genética
14.
Front Immunol ; 8: 1718, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29321773

RESUMO

T cells can recognize peptides encoded by mutated genes, but analysis of tumor-infiltrating lymphocytes suggests that very few neoantigens spontaneously elicit T-cell responses. This may be an important reason why immune checkpoint inhibitors are mainly effective in tumors with a high mutational burden. Reasons for clinically insufficient responses to neoantigens might be inefficient priming, inhibition, or deletion of the cognate T cells. Responses can be dramatically improved by cancer immunotherapy such as checkpoint inhibition, but often with temporary effects. By contrast, T cells from human leukocyte antigen (HLA)-matched donors can cure diseases such as chronic myeloid leukemia. The therapeutic effect is mediated by donor T cells recognizing polymorphic peptides for which the donor and patient are disparate, presented on self-HLA. Donor T-cell repertoires are unbiased by the immunosuppressive environment of the tumor. A recent study demonstrated that T cells from healthy individuals are able to respond to neoantigens that are ignored by tumor-infiltrating T cells of melanoma patients. In this review, we discuss possible reasons why neoantigens escape host T cells and how these limitations may be overcome by utilization of donor-derived T-cell repertoires to facilitate rational design of neoantigen-targeted immunotherapy.

15.
Sci Rep ; 7(1): 4916, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687807

RESUMO

The collagen- and calcium-binding EGF domains 1 (CCBE1) protein is necessary for lymphangiogenesis. Its C-terminal collagen-like domain was shown to be required for the activation of the major lymphangiogenic growth factor VEGF-C (Vascular Endothelial Growth Factor-C) along with the ADAMTS3 (A Disintegrin And Metalloproteinase with Thrombospondin Motifs-3) protease. However, it remained unclear how the N-terminal domain of CCBE1 contributed to lymphangiogenic signaling. Here, we show that efficient activation of VEGF-C requires its C-terminal domain both in vitro and in a transgenic mouse model. The N-terminal EGF-like domain of CCBE1 increased VEGFR-3 signaling by colocalizing pro-VEGF-C with its activating protease to the lymphatic endothelial cell surface. When the ADAMTS3 amounts were limited, proteolytic activation of pro-VEGF-C was supported by the N-terminal domain of CCBE1, but not by its C-terminal domain. A single amino acid substitution in ADAMTS3, identified from a lymphedema patient, was associated with abnormal CCBE1 localization. These results show that CCBE1 promotes VEGFR-3 signaling and lymphangiogenesis by different mechanisms, which are mediated independently by the two domains of CCBE1: by enhancing the cleavage activity of ADAMTS3 and by facilitating the colocalization of VEGF-C and ADAMTS3. These new insights should be valuable in developing new strategies to therapeutically target VEGF-C/VEGFR-3-induced lymphangiogenesis.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Células Endoteliais/metabolismo , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Linfedema/genética , Proteínas Supressoras de Tumor/genética , Fator C de Crescimento do Endotélio Vascular/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Células COS , Proteínas de Ligação ao Cálcio/metabolismo , Chlorocebus aethiops , Células Endoteliais/patologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Vasos Linfáticos/patologia , Linfedema/metabolismo , Linfedema/patologia , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Domínios Proteicos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteólise , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
J Natl Cancer Inst ; 94(11): 819-25, 2002 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-12048269

RESUMO

BACKGROUND: Vascular endothelial growth factor C (VEGF-C) stimulates tumor lymphangiogenesis (i.e., formation of lymphatic vessels) and metastasis to regional lymph nodes by interacting with VEGF receptor 3 (VEGFR-3). We sought to determine whether inhibiting VEGFR-3 signaling, and thus tumor lymphangiogenesis, would inhibit tumor metastasis. METHODS: We used the highly metastatic human lung cancer cell line NCI-H460-LNM35 (LNM35) and its parental line NCI-H460-N15 (N15) with low metastatic capacity. We inserted genes by transfection and established a stable N15 cell line secreting VEGF-C and a LNM35 cell line secreting the soluble fusion protein VEGF receptor 3-immunoglobulin (VEGFR-3-Ig, which binds VEGF-C and inhibits VEGFR-3 signaling). Control lines were transfected with mock vectors. Tumor cells were implanted subcutaneously into severe combined immunodeficient mice (n = 6 in each group), and tumors and metastases were examined 6 weeks later. In another approach, recombinant adenoviruses expressing VEGFR-3-Ig (AdR3-Ig) or beta-galactosidase (AdLacZ) were injected intravenously into LNM35 tumor-bearing mice (n = 14 and 7, respectively). RESULTS: LNM35 cells expressed higher levels of VEGF-C RNA and protein than did N15 cells. Xenograft mock vector-transfected LNM35 tumors showed more intratumoral lymphatic vessels (15.3 vessels per grid; 95% confidence interval [CI] = 13.3 to 17.4) and more metastases in draining lymph nodes (12 of 12) than VEGFR-3-Ig-transfected LNM35 tumors (4.1 vessels per grid; 95% CI = 3.4 to 4.7; P<.001, two-sided t test; and four lymph nodes with metastases of 12 lymph nodes examined). Lymph node metastasis was also inhibited in AdR3-Ig-treated mice (AdR3-Ig = 0 of 28 lymph nodes; AdLacZ = 11 of 14 lymph nodes). However, metastasis to the lungs occurred in all mice, suggesting that LNM35 cells can also spread via other mechanisms. N15 tumors overexpressing VEGF-C contained more lymphatic vessels than vector-transfected tumors but did not have increased metastatic ability. CONCLUSIONS: Lymph node metastasis appears to be regulated by additional factors besides VEGF-C. Inhibition of VEGFR-3 signaling can suppress tumor lymphangiogenesis and metastasis to regional lymph nodes but not to lungs.


Assuntos
Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/secundário , Metástase Linfática/prevenção & controle , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento/antagonistas & inibidores , Receptores de Fatores de Crescimento/metabolismo , Animais , Anticorpos/genética , Anticorpos/imunologia , Western Blotting , Divisão Celular , Fatores de Crescimento Endotelial/genética , Fatores de Crescimento Endotelial/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Metástase Linfática/patologia , Camundongos , Camundongos SCID , Transplante de Neoplasias , Receptores Proteína Tirosina Quinases/imunologia , Receptores de Fatores de Crescimento/imunologia , Transdução de Sinais , Fatores de Tempo , Células Tumorais Cultivadas , Fator C de Crescimento do Endotélio Vascular , Fator D de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular
17.
Biochim Biophys Acta ; 1654(1): 3-12, 2004 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-14984763

RESUMO

Nearly four centuries after the discovery of lymphatic vessels, the molecular mechanisms underlying their development are beginning to be elucidated. Vascular endothelial growth factor C (VEGF-C) and VEGF-D, via signaling through VEGFR-3, appear to be essential for lymphatic vessel growth. Observations from clinicopathological studies have suggested that lymphatic vessels serve as the primary route for the metastatic spread of tumor cells to regional lymph nodes. Recent studies in animal models have provided convincing evidence that tumor lymphangiogenesis facilitates lymphatic metastasis. However, it is not clear how tumor-associated lymphangiogenesis is regulated, and little is known about how tumor cells escape from the primary tumor and gain entry into the lymphatics. This review examines some of these issues and provides a brief summary of the recent developments in this field of research.


Assuntos
Vasos Linfáticos/fisiologia , Metástase Neoplásica/fisiopatologia , Fator C de Crescimento do Endotélio Vascular/fisiologia , Fator D de Crescimento do Endotélio Vascular/fisiologia , Animais , Humanos , Metástase Linfática , Necrose , Metástase Neoplásica/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/fisiologia
18.
Blood ; 112(5): 1547-8, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18725566
19.
Mol Oncol ; 9(10): 2019-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26548533

RESUMO

T lymphocytes can be redirected to recognize a tumor target and harnessed to combat cancer by genetic introduction of T-cell receptors of a defined specificity. This approach has recently mediated encouraging clinical responses in patients with cancers previously regarded as incurable. However, despite the great promise, T-cell receptor gene therapy still faces a multitude of obstacles. Identification of epitopes that enable effective targeting of all the cells in a heterogeneous tumor while sparing normal tissues remains perhaps the most demanding challenge. Experience from clinical trials has revealed the dangers associated with T-cell receptor gene therapy and highlighted the need for reliable preclinical methods to identify potentially hazardous recognition of both intended and unintended epitopes in healthy tissues. Procedures for manufacturing large and highly potent T-cell populations can be optimized to enhance their antitumor efficacy. Here, we review the current knowledge gained from preclinical models and clinical trials using adoptive transfer of T-cell receptor-engineered T lymphocytes, discuss the major challenges involved and highlight potential strategies to increase the safety and efficacy to make T-cell receptor gene therapy a standard-of-care for large patient groups.


Assuntos
Terapia Genética , Receptores de Antígenos de Linfócitos T/genética , Animais , Humanos , Depleção Linfocítica , Camundongos
20.
Methods Cell Biol ; 105: 223-38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21951532

RESUMO

The mammalian lymphatic vasculature has an important function in the maintenance of tissue fluid homeostasis, absorption of dietary lipids, and immune surveillance. The lymphatic vessels are also recruited by many tumors as primary routes for metastasis and mediate immune responses in inflammatory diseases, whereas dysfunction of the lymphatic drainage leads to lymphedema. The characterization of a lymphatic vasculature in zebrafish has made the advantages of this small model organism, the suitability for intravital time-lapse imaging of developmental processes and the amenability for chemical and forward genetic screens, available to lymphatic vascular research. Here we review our current understanding of embryonic lymphangiogenesis in zebrafish, its molecular and anatomical similarities to mammalian lymphatic vascular development, and the possibilities zebrafish offers to complement mouse models and cell culture assays in the lymphangiogenesis field.


Assuntos
Biologia do Desenvolvimento/métodos , Linfangiogênese/fisiologia , Doenças Linfáticas/patologia , Vasos Linfáticos/patologia , Linfografia/métodos , Imagem Molecular/métodos , Transdução de Sinais/fisiologia , Imagem com Lapso de Tempo/métodos , Peixe-Zebra , Animais , Modelos Animais de Doenças , Corantes Fluorescentes/análise , Humanos , Metabolismo dos Lipídeos , Doenças Linfáticas/genética , Vasos Linfáticos/embriologia , Camundongos , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA