Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(18): 186903, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977608

RESUMO

We study THz-driven condensate dynamics in epitaxial thin films of MgB_{2}, a prototype two-band superconductor (SC) with weak interband coupling. The temperature and excitation density dependent dynamics follow the behavior predicted by the phenomenological bottleneck model for the single-gap SC, implying adiabatic coupling between the two condensates on the ps timescale. The amplitude of the THz-driven suppression of condensate density reveals an unexpected decrease in pair-breaking efficiency with increasing temperature-unlike in the case of optical excitation. The reduced pair-breaking efficiency of narrow-band THz pulses, displaying minimum near ≈0.7 T_{c}, is attributed to THz-driven, long-lived, nonthermal quasiparticle distribution, resulting in Eliashberg-type enhancement of superconductivity, competing with pair breaking.

2.
Nat Mater ; 18(10): 1078-1083, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308513

RESUMO

Distinct many-body states may be created under non-equilibrium conditions through different ordering paths, even when their constituents are subjected to the same fundamental interactions. The phase-transition mechanism to such states remains poorly understood. Here, we show that controlled optical or electromagnetic perturbations can lead to an amorphous metastable state of strongly correlated electrons in a quasi-two-dimensional dichalcogenide. Scanning tunnelling microscopy reveals a hyperuniform pattern of localized charges, whereas multitip surface nanoscale conductivity measurements and tunnelling spectroscopy show an electronically gapless conducting state that is different from conventional Coulomb glasses and many-body localized systems. The state is stable up to room temperature and shows no signs of either local charge order or phase separation. The mechanism for its formation is attributed to a dynamical localization of electrons through mutual interactions. Theoretical calculations confirm the correlations between localized charges to be crucial for the state's unusual stability.

3.
Phys Rev Lett ; 122(23): 237001, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298885

RESUMO

We report the first observation of superconductivity in a heterostructure consisting of an insulating ferroelectric film (Ba_{0.8}Sr_{0.2}TiO_{3}) grown on an insulating parent compound of La_{2}CuO_{4} with [001] orientation. The heterostructure was prepared by magnetron sputtering on a nonatomically flat surface with inhomogeneities of the order of 1-2 nm. The measured superconducting transition temperature T_{c} is about 30 K. We have shown that superconductivity is confined near the interface region. Application of a weak magnetic field perpendicular to the interface leads to the appearance of the finite resistance. That confirms the quasi-two-dimensional nature of the superconductive state. The proposed concept promises ferroelectrically controlled interface superconductivity which offers the possibility of novel design of electronic devices.

4.
Nat Commun ; 15(1): 4836, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844460

RESUMO

Relaxation dynamics of complex many-body quantum systems trapped into metastable states is a very active field of research from both the theoretical and experimental point of view with implications in a wide array of topics from macroscopic quantum tunnelling and nucleosynthesis to non-equilibrium superconductivity and energy-efficient memory devices. In this work, we investigate quantum domain reconfiguration dynamics in the electronic superlattice of a quantum material using time-resolved scanning tunneling microscopy and unveil a crossover from temperature to noisy quantum fluctuation dominated dynamics. The process is modeled using a programmable superconducting quantum annealer in which qubit interconnections correspond directly to the microscopic interactions between electrons in the quantum material. Crucially, the dynamics of both the experiment and quantum simulation is driven by spectrally similar pink noise. We find that the simulations reproduce the emergent time evolution and temperature dependence of the experimentally observed electronic domain dynamics.

5.
Materials (Basel) ; 16(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37895654

RESUMO

The main advantage of using ferroelectric materials as a component of complex heterostructures is the ability to tune various properties of the whole system by means of an external electric field. In particular, the electric field may change the polarization direction within the ferroelectric material and consequently affect the structural properties, which in turn affects the electronic and magnetic properties of the neighboring material. In addition, ferroelectrics allow the electrostriction phenomenon to proceed, which is promising and can be used to affect the magnetic states of the interface state in the heterostructure through a magnetic component. The interfacial phenomena are of great interest, as they provide extended functionality useful for next-generation electronic devices. Following the idea of utilizing ferroelectrics in heterostructural components in the present works, we consider 2DEG, the Rashba effect, the effect of magnetoelectric coupling, and magnetostriction in order to emphasize the advantages of such heterostructures as components of devices. For this purpose, model systems of LaMnO3/BaTiO3, La2CuO4/BaTiO3, Bi/BaTiO3, and Bi/PbTiO3, Fe/BaTiO3 heterostructures are investigated using density functional theory calculations.

6.
Nat Commun ; 14(1): 8214, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081821

RESUMO

Metastability of many-body quantum states is rare and still poorly understood. An exceptional example is the low-temperature metallic state of the layered dichalcogenide 1T-TaS2 in which electronic order is frozen after external excitation. Here we visualize the microscopic dynamics of injected charges in the metastable state using a multiple-tip scanning tunnelling microscope. We observe non-thermal formation of a metastable network of dislocations interconnected by domain walls, that leads to macroscopic robustness of the state to external thermal perturbations, such as small applied currents. With higher currents, we observe annihilation of dislocations following topological rules, accompanied with a change of macroscopic electrical resistance. Modelling carrier injection into a Wigner crystal reveals the origin of formation of fractionalized, topologically entangled networks, which defines the spatial fabric through which single particle excitations propagate. The possibility of manipulating topological entanglement of such networks suggests the way forward in the search for elusive metastable states in quantum many body systems.

7.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499824

RESUMO

The ab initio calculations of a heterostructure based on the ferroelectric phase of barium titanate and dielectrics lanthanum manganese (LaMnO3) or silicon (Si) are presented. We analyze structures of BaTiO3/LaMnO3 and BaTiO3/Si interfaces, investigate magnetic properties and the impact of ferroelectric polarization. The use of ferroelectrics in the heterostructure plays a crucial role; in particular, ferroelectric polarization leads to the appearance of the conducting state at the interface and in the layers close to it. We show that defects (here, oxygen vacancies) incorporated into the system may change the electronic and magnetic properties of a system. Experimental results of magnetic susceptibility measurements for the Ba0.8Sr0.2TiO3/LaMnO3 heterostructure are also presented. It is shown that a correlation between the behavior of the ferromagnetic ordering and the resistance takes place. In addition, the ferromagnetic ordering at the interface of the heterostructure can be associated with the exchange interaction through current carriers that appear in high carrier concentration regions.

8.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364550

RESUMO

The study of Ba0.8Sr0.2TiO3/LaMnO3/Ba0.8Sr0.2TiO3 heterostructures on a MgO substrate with Ba0.8Sr0.2TiO3 ferroelectric films revealed the occurrence of a metallic character of the temperature behavior of the resistance at a temperature less than 175 K. This behavior is associated with an increased charge concentration at the interface due to a discontinuity in the ferroelectric polarization at the interface between the films. At these temperatures, the effect of negative photoconductivity is observed under uniform illumination with the light of a selected spectral composition event on the surface of the ferroelectric film. The combined exposure to green and infrared light led to an addition of the effects. As a result, a cumulative effect was observed. The effect of metallic conductivity is due to the discontinuity of ferroelectric polarization. Therefore, we explain that the partial screening of the ferroelectric polarization by photogenerated charge carriers causes a reduction in the carrier concentration at the interface. Measurements in the Kelvin mode of atomic force microscopy showed that illumination influences the surface charge concentration in a similar way; this observation confirms our hypothesis.

9.
Nat Commun ; 12(1): 3793, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145280

RESUMO

Forcing systems through fast non-equilibrium phase transitions offers the opportunity to study new states of quantum matter that self-assemble in their wake. Here we study the quantum interference effects of correlated electrons confined in monolayer quantum nanostructures, created by femtosecond laser-induced quench through a first-order polytype structural transition in a layered transition-metal dichalcogenide material. Scanning tunnelling microscopy of the electrons confined within equilateral triangles, whose dimensions are a few crystal unit cells on the side, reveals that the trajectories are strongly modified from free-electron states both by electronic correlations and confinement. Comparison of experiments with theoretical predictions of strongly correlated electron behaviour reveals that the confining geometry destabilizes the Wigner/Mott crystal ground state, resulting in mixed itinerant and correlation-localized states intertwined on a length scale of 1 nm. The work opens the path toward understanding the quantum transport of electrons confined in atomic-scale monolayer structures based on correlated-electron-materials.

10.
ACS Appl Nano Mater ; 2(6): 3743-3751, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31304463

RESUMO

The stacking of layered materials into heterostructures offers diverse possibilities for generating deformed moiré states arising from their mutual interaction. Here we report self-assembled two-dimensional nanoscale strain networks formed within a single prismatic (H) polytype monolayer of TaS2 created in situ on the surface of an orthorhombic 1T-TaS2 single crystal by a low-temperature laser-induced polytype transformation. The networks revealed by scanning tunneling microscopy (STM) take on diverse configurations at different temperatures, including extensive double stripes and a twisted 3-gonal mesh of connected 6-pronged vertices. The resulting phase diagram can be understood to be a consequence of thermally driven minimization of discommensurations between the H and 1T layers. Nontrivial dislocation defects of embedded 2- and 4-gonal structures are shown to be associated with local inhomogeneous strains. The creation of metastable heterostructures by laser quench at cryogenic temperatures in combination with STM manipulation of local strain demonstrates nanoscale control of topological defects in transition metal dichalcogenide heterostructures may be utilized in the fabrication of nanoscale electronic devices and neural networks.

11.
Sci Adv ; 4(3): eaao0043, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29670935

RESUMO

Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system's properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ3-MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing.

12.
Nat Commun ; 6: 10250, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26687762

RESUMO

The superconducting state in one-dimensional nanosystems is very delicate. While fluctuations of the phase of the superconducting wave function lead to the spontaneous decay of persistent supercurrents in thin superconducting wires and nanocircuits, discrete phase-slip fluctuations can also lead to more exotic phenomena, such as the appearance of metastable superconducting states in current-bearing wires. Here we show that switching between different metastable superconducting states in δ-MoN nanowires can be very effectively manipulated by introducing small amplitude electrical noise. Furthermore, we show that deterministic switching between metastable superconducting states with different numbers of phase-slip centres can be achieved in both directions with small electrical current pulse perturbations of appropriate polarity. The observed current-controlled bi-stability is in remarkable agreement with theoretically predicted trajectories of the system switching between different limit cycle solutions of a model one-dimensional superconductor.

13.
J Cardiothorac Surg ; 10: 9, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608502

RESUMO

BACKGROUND: Several studies have demonstrated that local ischemic preconditioning can reduce myocardial ischemia-reperfusion injury in cardiac surgery patients; however, preconditioning has not become a standard cardioprotective intervention, primarily because of the increased risk of atheroembolism during repetitive aortic cross-clamping. In the present study, we aimed to describe and validate a novel technique of preconditioning induction. METHODS: Patients undergoing coronary artery bypass grafting (12 women and 78 men; mean age, 56 ± 11 years) were randomized into 3 groups: (1) Controls (n = 30), (2) Perfusion (n = 30), and (3) Preconditioning (n = 30). All patients were operated under cardiopulmonary bypass using normothermic blood cardioplegia. Preconditioning was induced by subjecting the hemodynamically unloaded heart to 2 cycles of 3 min of ischemia and 3 min of reperfusion with normokalemic blood prior to cardioplegia. In the Perfusion group, the heart perfusion remained unaffected for 12 min. Troponin I (TnI) levels were analyzed before surgery, and 12, 24, 48 h, and 7 days after surgery. The secondary endpoints included the cardiac index, plasma natriuretic peptide level, and postoperative use of inotropes. RESULTS: Preconditioning resulted in a significant reduction in the TnI level on the 7th postoperative day only (0.10 ± 0.05 and 0.33 ± 0.88 ng/ml in Preconditioning and Perfusion groups, respectively, P < 0.05). In addition, cardiac index was significantly higher in the Preconditioning group than in the Control and Perfusion groups just after weaning from cardiopulmonary bypass. The number of patients requiring inotropic support with ≥ 2 agents after surgery was significantly lower in the Preconditioning and Perfusion group than in the Control group (P < 0.05). No complications of the procedure were recorded in the Preconditioning group. CONCLUSIONS: The preconditioning procedure described can be performed safely in cardiac surgery patients. The application of this technique of preconditioning was associated with certain benefits, including improved left ventricular function after weaning from cardiopulmonary bypass and a reduced need for inotropic support. However, the infarct-limiting effect of preconditioning in the early postoperative period was not evident. The procedure does not involve repetitive aortic cross-clamping, thus avoiding possible embolic complications.


Assuntos
Ponte de Artéria Coronária/métodos , Parada Cardíaca Induzida/métodos , Precondicionamento Isquêmico Miocárdico/métodos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Peptídeo Natriurético Encefálico/sangue , Resultado do Tratamento , Troponina I/sangue , Função Ventricular Esquerda
14.
Phys Rev Lett ; 93(21): 218101, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15601065

RESUMO

We report on a study of the interactions between holes and molecular vibrations on dry DNA using photoinduced infrared absorption spectroscopy. Laser photoexcited holes are found to have a room-temperature lifetime in excess of tau > 1 ms, clearly indicating the presence of localization. However, from a quantitative model analysis of the frequency shifts of vibrational modes caused by the holes, we find the hole-vibrational coupling constant to be relatively small, lambda approximately 0.2. This interaction leads to a change in the conformational energy of DeltaE0 approximately 0.015 eV, which is too small to cause self-trapping at room temperature. We conclude that, at least in the dry (A) form, DNA is best understood in terms of a double chain of coupled quantum dots arising from the pseudorandom chain sequence of base pairs, in which Anderson localization prevents the formation of a metallic state.


Assuntos
DNA/química , Fotoquímica , Espectrofotometria Infravermelho/métodos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA