Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(7): 3292-3302, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38306605

RESUMO

We report here the results of an experimental investigation of the electronic properties and photocurrent responses of the CaFeOQ and La2O2Fe2OQ2 phases and a computational study of the electronic structure of polar CaFeOSe. We find that both CaFeOQ (Q = S and Se) have band gaps and conduction band edge positions compatible with light-driven photocatalytic water splitting, although the oxysulfide suffers from degradation due to the oxidation of Fe2+ sites. The higher O/Q ratio in the Fe2+ coordination environment in CaFeOSe increases its stability without increasing the band gap beyond the visible range. The photocurrent CaFeOSe shows fast electron-hole separation, consistent with calculated carrier effective masses. These results suggest that these iron oxychalcogenides warrant further study to optimize their stability and morphology for photocatalytic and other photoactive applications.

2.
Inorg Chem ; 62(46): 18970-18981, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37932963

RESUMO

The new thioapatite Ba5(VO4-αSα)3X (X = F, Cl, I) series of compounds was prepared and characterized. Compared to known apatite phases built from unconnected vanadate VO4 groups separated by Ba2+ cations delimiting halide-filled channels, their crystal structure is built from mixed anion thiovanadate VO4-αSα, where V5+ is surrounded by both O and S, therefore exhibiting a triple anion lattice. Here, the strategy consisting in incorporating a chalcogenide anion aims at raising the valence band to bring the band gap to the visible range in order to reach photoactive materials under visible light. Both the halide anion nature and the S/O ratio impact the materials' photoconductivity. While the photocurrent response is comparable to that found in the recently investigated apatite phase Pb5(VO4)3I, a short carrier lifetime is detected as well as a shift of the activity toward the visible light. This apatite series combining thiovanadate and halide-filled channels opens new perspectives in the extended field of apatites and their applications.

3.
Inorg Chem ; 62(26): 10481-10489, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37349281

RESUMO

Band gap engineering using multiple anions is an established approach to novel photocatalysts that exhibit suitable band gap energies for water splitting and high photocorrosion resistance. However, few studies have been conducted on photocatalysts with polyanions, including polychalcogenide ions. Here, we present a new quaternary gallium oxysulfide with disulfide pairs (S2)2-, La4Ga2S8O3, grown out of a KI molten salt. Single-crystal X-ray diffraction analysis revealed that the oxysulfide crystallizes in the orthorhombic space group Pbcn with lattice constants of a = 18.3330(6) Å, b = 13.0590(5) Å, and c = 5.9022(3) Å. In the crystal structure, the GaS4-based zigzag chains and OLa4-based fluorite-like strips are independently arranged in two dimensions, which alternately stack via the disulfide pairs along the third direction. The oxysulfide is a direct-type semiconductor with a band gap of 2.45 eV. First-principles calculations combined with X-ray photoemission spectroscopy measurements show that S 3p states derived from the disulfide pairs dominate the valence band maximum and conduction band minimum, and these band-edge positions are suitable for the oxidation and reduction of water. Our comprehensive study based on the electronic structure suggests that the disulfide pairs make La4Ga2S8O3 a potential photocatalyst for water splitting under visible-light irradiation.

4.
Angew Chem Int Ed Engl ; 62(26): e202303487, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042950

RESUMO

Mixed-anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4 Si2 O7 Cl2 . We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon-based connectors from a non-oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed-anion solids.


Assuntos
Nanoestruturas , Cloreto de Sódio/química , Ânions/química , Nanoestruturas/química , Zinco/química , Dióxido de Silício/química , Cloretos/química , Catálise , Eletroquímica/métodos
5.
Inorg Chem ; 61(46): 18611-18621, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36343156

RESUMO

We present a combined experimental and computational study on the recently reported oxysulfide Sr6Cd2Sb6S10O7. Our spectroscopy and photoelectrochemical measurements and tests for photocatalytic activity indicate the potential of Sr6Cd2Sb6S10O7 for photocatalytic applications. In particular, the transient photocurrent response shows a reproducible photogenerated current which depends on light intensity and which indicates an efficient electron-hole separation upon visible light illumination. Density functional theory calculations, combined with crystal orbital Hamiltonian population analysis, give insights into the electronic structure of Sr6Cd2Sb6S10O7 and the origin of its physical properties. Our comprehensive investigation into Sr6Cd2Sb6S10O7 reveals the roles of its polar structure, polar Sb3+ coordination environments, and the 5s2 lone pair in making this compound a potential candidate for solar water splitting photocatalysis.

6.
Inorg Chem ; 59(9): 5907-5917, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32319754

RESUMO

Mixed-anion compounds are among the most promising systems to design functional materials with enhanced properties. In particular, heteroleptic environments around transition metals allow tuning of the polarity or band-gap engineering for instance. We present the original oxysulfide Ba5(VO2S2)2(S2)2, the fifth member in the quaternary system Ba-V-S-O. It exhibits the mixed-anion building units V5+O2S2 and isolated disulfide pairs (S2)2-. The structure is solved by combining single-crystal and powder X-ray diffraction and transmission electron microscopy. First-principles calculations were combined in order to highlight the anion roles. In particular, our density functional theory study shows that the 3p states of the disulfide pairs dictate the band gap. In this study, we point out anionic tools for band-gap engineering that can be useful for the design of phases for numerous applications. Finally, third harmonic generation (THG) was measured and compared to the large THG observed for Cu2O, which reveals the potential for nonlinear-optical properties that should be further investigated.

7.
Inorg Chem ; 58(2): 1349-1357, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30620193

RESUMO

The new oxysulfide Ba10V6S7O18, which can be written as Ba10S(VO3S)6, was prepared by solid state reaction. It crystallizes in noncentrosymmetric space group P63 with the following unit cell parameters: a = 18.3018(2) Šand c = 8.6525(2) Š( R1 = 3.21%). This original phase exhibits (VO3S) units separated by Ba2+ cations; the latter delimit one-dimensional (1D) hexagonal-like cavities filled by disordered sulfur S2- anions and arranged into two kinds of sulfur-deficient 1D channels. Density functional theory calculations were employed to gain insights into the chemical bonding and parameters that determine the structure, particularly the V-O versus V-S bonding inside the mixed anion VO3S tetrahedra, and the contribution of the S2- of the cavities. The title compound can be decomposed with three components mainly interacting by ionic bonds as follows, Ba10V6S7O18 → [Ba10]20+[S]2- [(VO3S)6]18-; this description may pave the way for the design of other phases related to this system with adjusted band gap features. In particular, the effect of the V(O,S)4:Ba ratio is discussed to emphasize the presence of the [S]2- component, in comparison with related structures such as Ba6V4O5S11 [Ba6(VO2S2)2(VS3O)(VS4)], as it contributes strongly just below the Fermi level with subsequent alteration of the band gap.

8.
Inorg Chem ; 58(19): 12609-12617, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31503469

RESUMO

We have investigated two original hydrated cobalt arsenates based on Co2+ octahedral edge-sharing chains. Their different magnetocrystalline anisotropies induce different types of metamagnetic transitions: spin-flop versus spin-flip. In both compounds, a strong local anisotropy (Ising spins) is favored by the spin-orbit coupling present in the CoO6 octahedra, while ferromagnetic (FM) exchanges predominate in the chains. Co2(As2O7)·2H2O (1) orders antiferromagnetically below TN = 6.7 K. The magnetic structure is a noncollinear antiferromagnetic spin arrangement along the zigzag chains with DFT calculations implying frustrated chains and weakened anisotropy. A metamagnetic transition suggests a spin-flop process above µ0H = 3.2 T. In contrast, in BaCo2As2O8·2H2O (2) linear chains are arranged in disconnected layers, with only interchain ferromagnetic exchanges, therefore increasing its magnetocrystalline anisotropy. The magnetic structure is collinear with a magnetic easy axis that allows a spin-flop to a sharp spin-flip transition below TN = 15.1 K and above µ0H = 6.2 T.

9.
J Am Chem Soc ; 139(47): 17031-17043, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29094941

RESUMO

The multiferroic LuFe2.5+2O4 was recently proposed as a promising material for oxygen storage due to its easy reversible oxidation into LuFe3+2O4.5. We have investigated the similar scenario in YbFe2O4+x, leading to a slightly greater oxygen storage (OSC) capacity of 1434 µmol O/g. For the first time, the structural model of LnFe2O4.5 was fully understood by high-resolution microscopy images, and synchrotron and neutron diffraction experiments, as well as maximum entropy method. The oxygen uptake promotes a reconstructive shearing of the [YbO2] sub-units controlled by the adaptive Ln/Fe oxygen coordination and the Fe2/3+ redox. After oxidation, the rearrangement of the Fe coordination polyhedra is unique such that all available FeOn units (n = 6, 5, 4 in octahedra, square pyramids, trigonal bipyramids, tetrahedra) were identified in modulated rows growing in plane. This complex pseudo-ordering gives rise to short-range antiferromagnetic correlation within an insulating state.

10.
Inorg Chem ; 56(14): 8547-8553, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28665129

RESUMO

Topochemical modification methods for solids have shown great potential in generating metastable structures inaccessible through classical synthetic routes. Here, we present the enhanced topotactic reduction of the multiferroic compound YMnO3. At moderate temperature in ammonia flow, the most reduced YMnO3-δ (δ = 0.5) phase could be stabilized. XRD, PND, and HREM results show that phase separation occurs into two intimately intergrown layered sublattices with nominal compositions ∞[YMn2+O2+x](1-2x)+ and ∞[YMn2+O3-x](1-2x)- containing versatile Mn2+ coordinations. The former sublattice shows original AA stacking between Mn layers, while AB stacking in the latter results from oxygen removal from the parent YMnO3 crystal structure.

11.
Inorg Chem ; 55(9): 4354-61, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27097360

RESUMO

Two new mixed-valence Fe(2/3+) barium phosphates have been synthesized in hydrothermal conditions and characterized: Ba2Fe(2.66+)3(PO4)4·2H2O (compound 1, ratio Fe(3+)/Fe(2+) = 2:1, orthorhombic space group Pbca, a = 6.71240(10) Å, b = 10.6077(2) Å, c = 20.9975(5) Å, R1 = 3.39%) and BaFe(2.33+)3(PO4)3 (compound 2, ratio Fe(3+)/Fe(2+) = 1:2, orthorhombic, space group Imma with a = 10.5236(3) Å, b = 13.4454(4) Å, c = 6.6411(2) Å, R1 = 1.63%). 1 has a two-dimensional crystal structure built of [Fe(2.5+)2Fe(3+)1(PO4)4](4-) layers with charge segregation on two individual Fe crystal sites, in contrast to the single valence on these two sites found in similar layers of Na3Fe(3+)3(PO4)4. The crystal structure of 2 is formed of the same layers but condensed into a 3D [Fe(2+)2Fe(3+)1(PO4)3](2-) framework. The complete Fe(2+) vs Fe(3+) charge ordering on the two available sites differs from what was found in the two previous cases and denotes a remarkable charge adaptability of the common elementary units. Compared to the antiferromagnetic Na3Fe(3+)3(PO4)4 the partial iron reduction into Fe(2+) is responsible for strong ferromagnetic components along the c-easy axis for both 1 and 2. Additionally 1 shows multiple magnetization steps in the perpendicular direction, giving raise to atypical anisotropic magnetism into a complex magnetic phase diagram.

12.
Inorg Chem ; 55(15): 7582-92, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27414069

RESUMO

The Sillen X1 series of Bi(3+)A(2+)O2X (A = Cd, Ca, Sr, Ba, Pb; X = Cl, Br, I) compounds is composed of three main crystallographic types, namely, the tetragonal form (space group (S.G.) I4/mmm), the orthorhombic form (S.G. Cmcm), and the monoclinic form (S.G. P21/m). Because of Bi(3+)/A(2+) disorder the Bi(3+) based photoluminescence (PL) of the tetragonal polytypes is quenched at room temperature (RT). In the two other ordered forms, the Bi-O-Bi connectivity is different but limited, such that bluish/greenish emission occurs at RT in the monoclinic CdBiO2Cl and CaBiO2Cl and orthorhombic SrBiO2Cl and BaBiO2Cl phases. The crystal structure of BaBiO2Br was refined in the orthorhombic Cmcm space group and also shows RT emission. Focusing on the RT luminescent activity as a key parameter, the PL active compounds were investigated by means of density functional theory calculations and UV-visible reflectance spectroscopy. The influence of A and X ions on the excitation energy is discussed by analyzing the A-O-Bi and Bi-X bonding schemes and gives some insights for rational tuning of both the excitation and emission energies.

13.
Inorg Chem ; 55(5): 2252-60, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26901292

RESUMO

A new lanthanum oxide, KLa5O5(VO4)2, was synthesized using a flux growth technique that involved solid-state reaction under an air atmosphere at 900 °C. The crystal structure was solved and refined using an innovative approach recently established and based on three-dimensional (3D) electron diffraction data, using precession of the electron beam and then validated against Rietveld refinement and denisty functional theory (DFT) calculations. It crystallizes in a monoclinic unit cell with space group C2/m and has unit cell parameters of a = 20.2282(14) Å, b = 5.8639(4) Å, c = 12.6060(9) Å, and ß = 117.64(1)°. Its structure is built on Cresnel-like two-dimensional (2D) units (La5O5) of 4*3 (OLa4) tetrahedra, which run parallel to (001) plane, being surrounded by isolated VO4 tetrahedra. Four isolated vanadate groups create channels that host K(+) ions. Substitution of K(+) cations by another alkali metal is possible, going from lithium to rubidium. Li substitution led to a similar phase with a primitive monoclinic unit cell. A complementary selected area electron diffraction (SAED) study highlighted diffuse streaks associated with stacking faults observed on high-resolution electron microscopy (HREM) images of the lithium compound. Finally, preliminary catalytic tests for ethanol oxidation are reported, as well as luminescence evidence. This paper also describes how solid-state chemists can take advantages of recent progresses in electron crystallography, assisted by DFT calculations and powder X-ray diffraction (PXRD) refinements, to propose new structural types with potential applications to the physicist community.

14.
Inorg Chem ; 55(17): 9077-84, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27560309

RESUMO

[Pb10O4]Pb2(B2O5)Cl12 (1) and [Pb18O12]Pb(BO2OH)2Cl10 (2) were obtained via high-temperature high-pressure experiments. [O12Pb18](12+) and [O4Pb10](12+) oxocentered structural units of different dimensionality are excised from the ideal [OPb] layer in tetragonal α-PbO. 2 is formed with an excess of lead oxide component, and 1 is formed with an excess of borate and halide reagents. The structure of 2 can be visualized as the incorporation of {Pb(10)Cl4(BO2OH)2} clusters into alternating PbO and chloride layers, with the existence of square vacancies in both. However, the structure of 1 is described as the intrusion of [O4Pb10](12+) tetramers linked by disordered Pb(B2O5) groups into a halogen three-dimensional matrix. The structure of 2 contains 10 symmetrically independent Pb positions. The 6s(2) lone electron pair is stereochemically active on Pb(1)-Pb(9) atoms, whereas it is inert on Pb(10). All of the Pb coordinations in the structure of 2, in accordance with ECCv (volume eccentricity) parameters and the density of states (DOS), can be subdivided into three groups. The current study is the first attempt to analyze this unusual behavior in structurally complex oxyhalide material with the rare case of Pb(2+) cations, demonstrating both stereochemically active and inactive behavior of the lone pair via charge and first-principle calculations.

15.
Inorg Chem ; 54(23): 11550-6, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26584083

RESUMO

Novel Pb7O6Br2 (1) lead oxybromide was prepared from Pb oxybromide melt by the "rapid quenching" route. Bonding scheme, thermal expansion, and structural properties were studied. The structural features of this unexpectedly complex phase are described on the basis of lone electron pair stereochemical activity and Pb-Br versus Pb-O bonding scheme. The structure of 1 contains a number of cavities, which can be assigned to the self-containments of the lone electron pairs on Pb(2+) cations. "Empty" □Pb4 chains are observed in between of the folding sides of the adjacent strongly corrugated oxocentered [Pb7O6](2+) layers. Highly isotropic thermal expansion of 1 appeared to be unexpected. The possible explanations of such a behavior in 1 are given. The structure of 1 is an interesting example of tetrahedral framework with mixed chemical bonding and is the densest known among Pb oxyhalides with the density of 18.4 tetrahedra/1000 Å(3). Current study shows that oxocentered layers derivatives from α-PbO can be very flexible and form rather dense three-dimensional structural topologies. The properties and structure are compared to other phases crystallizing in the anhydrous PbO-PbX2 (X = F, Cl, Br, I) systems, illustrate the complexity of lead oxyhalides, and reveal new and general pathways for the targeted synthesis of new phases with the Pb-O units of desired dimensionality. The indirect gap value of ∼ 2.04 eV obtained from generalized gradient approximation calculations demonstrates potentially good photocatalytic properties of 1.

16.
Inorg Chem ; 54(17): 8733-43, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26288007

RESUMO

The 2D-Ising ferromagnetic phase BaFe(2+)2(PO4)2 shows exsolution of up to one-third of its iron content (giving BaFe(3+)1.33(PO4)2) under mild oxidation conditions, leading to nanosized Fe2O3 exsolved clusters. Here we have prepared BaFe(2-y)M(y)(PO4)2 (M = Co(2+), Ni(2+); y = 0, 0.5, 1, 1.5) solid solutions to investigate the feasibility and selectivity of metal exsolution in these mixed metallic systems. For all the compounds, after 600 °C thermal treatment in air, a complete oxidation of Fe(2+) to Fe(3+) leaves stable M(2+) ions, as verified by (57)Fe Mössbauer spectroscopy, TGA, TEM, microprobe, and XANES. The size of the nanometric α-Fe2O3 clusters coating the main phase strongly depends on the yM metal concentration. For M-rich phases the iron diffusion is hampered so that a significant fraction of superparamagnetic α-Fe2O3 particles (100% for BaFe(0.5-x)Co(1.5)(PO4)2) was detected even at 78 K. Although Ni(2+) and Co(2+) ions tend to block Fe diffusion, the crystal structure of BaFe(0.67)Co1(PO4)2 demonstrates a fully ordered rearrangement of Fe(3+) and Co(2+) ions after Fe exsolution. The magnetic behaviors of the Fe-depleted materials are mostly dominated by antiferromagnetic exchange, while Co(2+)-rich compounds show metamagnetic transitions reminiscent of the BaCo2(PO4)2 soft helicoidal magnet.

17.
Inorg Chem ; 53(13): 6969-78, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24940992

RESUMO

The combination of oxo-bismuthite slabs with counter oxo-anions main often leads to a series of layered Sillen-related compounds. For electroneutrality, it is convenient that the structure incorporates aliovalent cations such as Bi(3+)/M(2+) ions that could be confined either in the Bi/O slabs or in the interleave. In the case of SO4(2-) oxo-anions, only two compounds have been reported for M = Co, Cu, while interesting magnetic topologies emerge in absence of any prior characterization. Our reinvestigation of these systems using crystal growth in Bi2O3 flux led to the full structural characterization of [Bi2CoO3](SO4) (I) and [Bi6.2367Cu1.6O8](SO4)3 (II), which both exhibit pleated [Bi/M/O] slabs running in doubled cells comparatively to previous reports. (I) shows an interesting weak ferromagnetism (∼0.2 µB/Co) below 17 K arising from Dzyaloshinskii-Moriya interactions in Co(2+) zigzag chains, while (II) is essentially a paramagnet despite the presence of Cu2O6 dimers. Finally in the novel [Bi6O6](CoO2)(SO4)2 (III), the Co(2+) ions are ordered with sulfate in the interleaves, leading to a noncentrosymmetric crystal structure.

18.
Angew Chem Int Ed Engl ; 53(49): 13365-70, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25346021

RESUMO

BaFe(2+) 2 (PO4 )2 was recently prepared and identified as the first 2D-Ising ferromagnetic oxide with an original reentrant structural transition driven by high-spin Fe(2+) ions arranged in honeycomb layers. Both long-term air exposure and moderate temperature (T>375 °C) leads to topochemical oxidation into iron-depleted compounds with mixed Fe(2+) /Fe(3+) valence. This process is unique, as the exsolution is effective even from single crystal with preservation of the initial crystallinity, and the structure of the deficient BaFe2-x (PO4 )2 (x

19.
Angew Chem Int Ed Engl ; 53(12): 3111-4, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24519961

RESUMO

The quest for new oxides with cations containing active lone-pair electrons (E) covers a broad field of targeted specificities owing to asymmetric electronic distribution and their particular band structure. Herein, we show that the novel compound BaCoAs2 O5, with lone-pair As(3+) ions, is built from rare square-planar Co(2+) O4 involved in direct bonding between As(3+) E and Co(2+) dz2 orbitals (Co-As=2.51 Å). By means of DFT and Hückel calculations, we show that this σ-type overlapping is stabilized by a two-orbital three-electron interaction allowed by the high-spin character of the Co(2+) ions. The negligible experimental spin-orbit coupling is expected from the resulting molecular orbital scheme in O3 AsE-CoO4 clusters.

20.
J Am Chem Soc ; 135(35): 13023-9, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23968376

RESUMO

BaFe2(PO4)2 was recently prepared by hydrothermal synthesis and identified as the first two-dimensional (2D) Ising ferromagnetic oxide, in which honeycomb layers made up of edge-sharing FeO6 octahedra containing high-spin Fe(2+) ions (S = 2) are isolated by PO4 groups and Ba(2+) cations. BaFe2(PO4)2 has a trigonal R-3 structure at room temperature but adopts a triclinic P-1 structure below 140 K due to the Jahn-Teller (JT) instability arising from the (t2g)(4)(eg)(2) configuration. The triclinic crystal structure was refined to find significantly distorted Fe(2+)O6 octahedra in the honeycomb layers while the distortion amplitude QJT was estimated to 0.019 Å. The JT stabilization energy is estimated to be ∼7 meV per formula unit by DFT calculations. Below ∼70 K, very close to the ferromagnetic transition temperature Tc = 65.5 K, the structure of BaFe2(PO4)2 returns to a trigonal R-3 structure in the presence of significant ferromagnetic domains. This rare re-entrant structural transition is accompanied by a discontinuous change in the quadrupolar splitting of Fe(2+), as determined by Mössbauer spectroscopy. EPR measurements show the presence of magnetic domains well above Tc , as expected for a ferromagnetic 2D Ising system, and support that the magnetism of BaFe2(PO4)2 is uniaxial (g⊥ = 0).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA