Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Anal Biochem ; 691: 115546, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38670418

RESUMO

Diabetes is a chronic disease that is characterized by high blood sugar levels and can have several harmful outcomes. Hyperglycemia, which is defined by persistently elevated blood sugar, is one of the primary concerns. People can improve their overall well-being and get optimal health outcomes by prioritizing diabetes control. Although the use of experimental approaches in diabetes treatment is cost-effective, it necessitates the development of many strategies for evaluating the efficacy of therapies. Researchers can quickly create new strategies for managing diabetes and get vital insights by enabling virtual screening with computational tools and procedures. In this study, we suggest a predictor named STADIP (STacking-based predictor for AntiDiabetic Peptides), a new method to predict antidiabetic peptides (ADPs) utilizing a stacked-based ensemble approach. It uses 12 different feature encodings and seven machine-learning techniques to construct 84 baseline models. The impacts of various baseline models on ADP prediction were then thoroughly examined. A two-step feature selection method, eXtreme Gradient Boosting with Sequential Forward Selection (XGB-SFS), was employed to determine the optimal number, out of 84 PFs to enhance predictive performance. Subsequently, utilizing the meta-predictor approach, 45 selected PFs were integrated into an XGB classifier to formulate the final hybrid model. The proposed method demonstrated superior predictive capabilities compared to constituent baseline models, as evidenced by evaluations on both cross-validation and independent tests. During extensive independent testing, STADIP achieved promising performance with accuracy and mathew's correlation coefficient of 0.954 and 0.877, respectively. It is anticipated that it will be useful tool in helping the scientific community to identify new antidiabetic proteins.


Assuntos
Hipoglicemiantes , Peptídeos , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Peptídeos/química , Humanos , Aprendizado de Máquina , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/sangue
2.
Biochem Genet ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167984

RESUMO

Carp is a key aquaculture species worldwide. The intensification of carp farming, aimed at meeting the high demand for protein sources for human consumption, has resulted in adverse effects such as poor water quality, increased stress, and disease outbreaks. While antibiotics have been utilized to mitigate these issues, their use poses risks to both public health and the environment. As a result, alternative and more sustainable practices have been adopted to manage the health of farmed carp, including the use of probiotics, prebiotics, phytobiotics, and vaccines to prevent disease outbreaks. Phytobiotics, being both cost-effective and abundant, have gained widespread acceptance. They offer various benefits in carp farming, such as improved growth performance, enhanced immune system, increased antioxidant capacity, stress alleviation from abiotic factors, and enhanced disease resistance. Currently, a focal point of research involves employing molecular approaches to assess the impacts of phytobiotics in aquatic animals. Gene expression, the process by which genetic information encoded is translated into function, along with transcription profiling, serves as a crucial tool for detecting changes in gene expression within cells. These changes provide valuable insights into the growth rate, immune system, and flesh quality of aquatic animals. This review delves into the positive impacts of phytobiotics on immune responses, growth, antioxidant capabilities, and flesh quality, all discerned through gene expression changes in carp species. Furthermore, this paper explores existing research gaps and outlines future prospects for the utilization of phytobiotics in aquaculture.

3.
Fish Physiol Biochem ; 50(1): 307-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38376668

RESUMO

Aquaculture has intensified tremendously with the increasing demand for protein sources as the global population grows. However, this industry is plagued with major challenges such as poor growth performance, the lack of a proper environment, and immune system impairment, thus creating stress for the aquaculture species and risking disease outbreaks. Currently, prophylactics such as antibiotics, vaccines, prebiotics, probiotics, and phytobiotics are utilized to minimize the negative impacts of high-density farming. One of the promising prophylactic agents incorporated in fish feed is resveratrol, a commercial phytophenol derived via the methanol extraction method. Recent studies have revealed many beneficial effects of resveratrol in aquatic animals. Therefore, this review discusses and summarizes the roles of resveratrol in improving growth performance, flesh quality, immune system, antioxidant capacity, disease resistance, stress mitigation, and potential combination with other prophylactic agents for aquatic animals.


Assuntos
Peixes , Probióticos , Animais , Resveratrol/farmacologia , Probióticos/farmacologia , Aquicultura/métodos , Resistência à Doença
4.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677857

RESUMO

Wet chemical methods are usually employed in the analysis of macronutrients such as Potassium (K) and Phosphorus (P) and followed by traditional sensor techniques, including inductively coupled plasma optical emission spectrometry (ICP OES), flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GF AAS), and inductively coupled plasma mass spectrometry (ICP-MS). Although these procedures have been established for many years, they are costly, time-consuming, and challenging to follow. This study studied the combination of laser-induced breakdown spectroscopy (LIBS) and visible and near-infrared spectroscopy (Vis-NIR) for the quick detection of PK in different varieties of organic fertilizers. Explainable AI (XAI) through Shapley additive explanation values computation (Shap values) was used to extract the valuable features of both sensors. The characteristic variables from different spectroscopic devices were combined to form the spectra fusion. Then, PK was determined using Support Vector Regression (SVR), Partial Least Squares Regression (PLSR), and Extremely Randomized Trees (Extratrees) models. The computation of the coefficient of determination (R2), root mean squared error (RMSE), and residual prediction deviation (RPD) showed that FUSION was more efficient in detecting P (R2p = 0.9946, RMSEp = 0.0649% and RPD = 13.26) and K (R2p = 0.9976, RMSEp = 0.0508% and RPD = 20.28) than single-sensor detection. The outcomes indicated that the features extracted by XAI and the data fusion of LIBS and Vis-NIR could improve the prediction of PK in different varieties of organic fertilizers.

5.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110593

RESUMO

Fast detection of heavy metals is important to ensure the quality and safety of herbal medicines. In this study, laser-induced breakdown spectroscopy (LIBS) was applied to detect the heavy metal content (Cd, Cu, and Pb) in Fritillaria thunbergii. Quantitative prediction models were established using a back-propagation neural network (BPNN) optimized using the particle swarm optimization (PSO) algorithm and sparrow search algorithm (SSA), called PSO-BP and SSA-BP, respectively. The results revealed that the BPNN models optimized by PSO and SSA had better accuracy than the BPNN model without optimization. The performance evaluation metrics of the PSO-BP and SSA-BP models were similar. However, the SSA-BP model had two advantages: it was faster and had higher prediction accuracy at low concentrations. For the three heavy metals Cd, Cu and Pb, the prediction correlation coefficient (Rp2) values for the SSA-BP model were 0.972, 0.991 and 0.956; the prediction root mean square error (RMSEP) values were 5.553, 7.810 and 12.906 mg/kg; and the prediction relative percent deviation (RPD) values were 6.04, 10.34 and 4.94, respectively. Therefore, LIBS could be considered a constructive tool for the quantification of Cd, Cu and Pb contents in Fritillaria thunbergii.


Assuntos
Fritillaria , Metais Pesados , Fritillaria/química , Cádmio , Chumbo , Metais Pesados/análise , Análise Espectral/métodos , Algoritmos , Lasers
6.
Heredity (Edinb) ; 128(6): 402-410, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34880420

RESUMO

Wheat head blast is a dangerous fungal disease in South America and has recently spread to Bangladesh and Zambia, threatening wheat production in those regions. Host resistance as an economical and environment-friendly management strategy has been heavily relied on, and understanding the resistance loci in the wheat genome is very helpful to resistance breeding. In the current study, two recombinant inbred line (RIL) populations, Alondra/Milan (with 296 RILs) and Caninde#2/Milan-S (with 254 RILs and Milan-S being a susceptible variant of Milan), were used for mapping QTL associated with head blast resistance in field experiments. Phenotyping was conducted in Quirusillas and Okinawa, Bolivia, and in Jashore, Bangladesh, during the 2017-18 and 2018-19 cropping cycles. The DArTseq® technology was employed to genotype the lines, along with four STS markers in the 2NS region. A QTL with consistent major effects was mapped on the 2NS/2AS translocation region in both populations, explaining phenotypic variation from 16.7 to 79.4% across experiments. Additional QTL were detected on chromosomes 2DL, 7AL, and 7DS in the Alondra/Milan population, and 2BS, 4AL, 5AS, 5DL, 7AS, and 7AL in the Caninde#2/Milan-S population, all showing phenotypic effects <10%. The results corroborated the important role of the 2NS/2AS translocation on WB resistance and identified a few novel QTL for possible deployment in wheat breeding. The low phenotypic effects of the non-2NS QTL warrantee further investigation for novel QTL with higher and more stable effects against WB, to alleviate the heavy reliance on 2NS-based resistance.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/genética
7.
Sensors (Basel) ; 22(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36502254

RESUMO

The foot is a vital organ, as it stabilizes the impact forces between the human skeletal system and the ground. Hence, precise foot dimensions are essential not only for custom footwear design, but also for the clinical treatment of foot health. Most existing research on measuring foot dimensions depends on a heavy setup environment, which is costly and ineffective for daily use. In addition, there are several smartphone applications online, but they are not suitable for measuring the exact foot shape for custom footwear, both in clinical practice and public use. In this study, we designed and implemented computer-vision-based smartphone application OptiFit that provides the functionality to automatically measure the four essential dimensions (length, width, arch height, and instep girth) of a human foot from images and 3D scans. We present an instep girth measurement algorithm, and we used a pixel per metric algorithm for measurement; these algorithms were accordingly integrated with the application. Afterwards, we evaluated our application using 19 medical-grade silicon foot models (12 males and 7 females) from different age groups. Our experimental evaluation shows that OptiFit could measure the length, width, arch height, and instep girth with an accuracy of 95.23%, 96.54%, 89.14%, and 99.52%, respectively. A two-tailed paired t-test was conducted, and only the instep girth dimension showed a significant discrepancy between the manual measurement (MM) and the application-based measurement (AM). We developed a linear regression model to adjust the error. Further, we performed comparative analysis demonstrating that there were no significant errors between MM and AM, and the application offers satisfactory performance as a foot-measuring application. Unlike other applications, the iOS application we developed, OptiFit, fulfils the requirements to automatically measure the exact foot dimensions for individually fitted footwear. Therefore, the application can facilitate proper foot measurement and enhance awareness to prevent foot-related problems caused by inappropriate footwear.


Assuntos
, Sapatos , Masculino , Feminino , Humanos , Pé/diagnóstico por imagem , Algoritmos , Smartphone , Computadores
8.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144775

RESUMO

Traditional Chinese herbal medicine (TCHM) plays an essential role in the international pharmaceutical industry due to its rich resources and unique curative properties. The flowers, stems, and leaves of Fritillaria contain a wide range of phytochemical compounds, including flavonoids, essential oils, saponins, and alkaloids, which may be useful for medicinal purposes. Fritillaria thunbergii Miq. Bulbs are commonly used in traditional Chinese medicine as expectorants and antitussives. In this paper, a feasibility study is presented that examines the use of hyperspectral imaging integrated with convolutional neural networks (CNN) to distinguish twelve (12) Fritillaria varieties (n = 360). The performance of support vector machines (SVM) and partial least squares-discriminant analysis (PLS-DA) was compared with that of convolutional neural network (CNN). Principal component analysis (PCA) was used to assess the presence of cluster trends in the spectral data. To optimize the performance of the models, cross-validation was used. Among all the discriminant models, CNN was the most accurate with 98.88%, 88.89% in training and test sets, followed by PLS-DA and SVM with 92.59%, 81.94% and 99.65%, 79.17%, respectively. The results obtained in the present study revealed that application of HSI in conjunction with the deep learning technique can be used for classification of Fritillaria thunbergii varieties rapidly and non-destructively.


Assuntos
Alcaloides , Antitussígenos , Aprendizado Profundo , Medicamentos de Ervas Chinesas , Fritillaria , Óleos Voláteis , Saponinas , Alcaloides/análise , Medicamentos de Ervas Chinesas/química , Expectorantes , Flavonoides , Fritillaria/química , Imageamento Hiperespectral , Compostos Fitoquímicos , Tecnologia
9.
Medicina (Kaunas) ; 58(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557026

RESUMO

Background: Smartphones and wearable devices have become a part and parcel of the healthcare industry. The use of wearable technology has already proved its potentials in improving healthcare research, clinical work, and patient care. The real time data allows the care providers to monitor the patients' symptoms remotely, prioritize the patients' visits, assist in decision-making, and carry out advanced care planning. Objectives: The primary objective of our study was to investigate the potential use of wearable devices as a prognosis tool among patients in hospice care and palliative care, and the secondary objective was to examine the association between wearable devices and clinical data in the context of patient outcomes, such as discharge and deceased at various time intervals. Methods: We employed a prospective observational research approach to continuously monitor the hand movements of the selected 68 patients between December 2019 and June 2022 via an actigraphy device at hospice or palliative care ward of Taipei Medical University Hospital (TMUH) in Taiwan. Results: The results revealed that the patients with higher scores in the Karnofsky Performance Status (KPS), and Palliative Performance Scale (PPS) tended to live at discharge, while Palliative Prognostic Score (PaP) and Palliative prognostic Index (PPI) also shared the similar trend. In addition, the results also confirmed that all these evaluating tools only suggested rough rather than accurate and definite prediction. The outcomes (May be Discharge (MBD) or expired) were positively correlated with accumulated angle and spin values, i.e., the patients who survived had higher angle and spin values as compared to those who died/expired. Conclusion: The outcomes had higher correlation with angle value compared to spin and ACT. The correlation value increased within the first 48 h and then began to decline. We recommend rigorous prospective observational studies/randomized control trials with many participants for the investigations in the future.


Assuntos
Cuidados Paliativos na Terminalidade da Vida , Neoplasias , Dispositivos Eletrônicos Vestíveis , Humanos , Prognóstico , Neoplasias/diagnóstico , Cuidados Paliativos/métodos
10.
Malays J Med Sci ; 29(2): 55-68, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35528808

RESUMO

Background: Diarrhoeagenic verotoxin producing non-O157 Escherichia coli (VTEC) are associated with endemic infantile diarrhoea-causing morbidity and mortality worldwide. VTEC can also cause severe illness and has an impact on outbreaks, especially in developing countries. This study aims to investigate the prevalence and characterisation of VTEC and their association in causing infectious diarrhoea among Malaysian children. Methods: Standard microbiological techniques identified a total of 137 non-repeated, clinically significant E. coli isolates. Serological assays discerned non-O157 E. coli serogroup, subjected to virulence screen (VT1 and VT2) by a polymerase chain reaction (PCR). Results: Different PCR sets characterised the 49 clinical isolates of sorbitol positive non-O157 E. coli. Twenty-nine isolates harboured verotoxin genes associated with diarrhoea among children (≤ 5 years old). Among the 29 (59.18%) strains of verotoxin producing E. coli, genotypes VT1 and VT2 were detected in 21 (42.85%) and 5 (10.20%) isolates respectively, while both VT1 and VT2 genes were confirmed in 3 (6.12%) isolates. Conclusion: This study evaluates on the prevalence, serological characteristics and antimicrobial susceptibility patterns of VTEC diarrhoea affected children (≤ 5 years old). Besides, the prevalence of verotoxin gene was determined as a root cause of diarrhoea among Malaysian children.

11.
Anal Biochem ; 612: 113955, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949607

RESUMO

Phosphorylation is a ubiquitous type of post-translational modification (PTM) that occurs in both eukaryotic and prokaryotic cells where in a phosphate group binds with amino acid residues. These specific residues, i.e., serine (S), threonine (T), and tyrosine (Y), exhibit diverse functions at the molecular level. Recent studies have determined that some diseases such as cancer, diabetes, and neurodegenerative diseases are caused by abnormal phosphorylation. Based on its potential applications in biological research and drug development, the large-scale identification of phosphorylation sites has attracted interest. Existing wet-lab technologies for targeting phosphorylation sites are overpriced and time consuming. Thus, computational algorithms that can efficiently accelerate the annotation of phosphorylation sites from massive protein sequences are needed. Numerous machine learning-based methods have been implemented for phosphorylation sites prediction. However, despite extensive efforts, existing computational approaches continue to have inadequate performance, particularly in terms of overall ACC, MCC, and AUC. In this paper, we report a novel deep learning-based predictor to overcome these performance hurdles, DeepPPSite, which was constructed using a stacked long short-term memory recurrent network for predicting phosphorylation sites. The proposed technique expediently learns the protein representations from conjoint protein descriptors. The experimental results indicated that our model achieved superior performance on the training dataset for S, T and Y, with MCC values of 0.608, 0.602, and 0.558, respectively, using a 10-fold cross-validation test. We further determined the generalization efficacy of the proposed predictor DeepPPSite by conducting a rigorous independent test. The predictive MCC values were 0.358, 0.356, and 0.350 for the S, T, and Y phosphorylation sites, respectively. Rigorous cross-validation and independent validation tests for the three types of phosphorylation sites demonstrated that the designed DeepPPSite tool significantly outperforms state-of-the-art methods.


Assuntos
Biologia Computacional/métodos , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Aprendizado Profundo , Modelos Estatísticos , Fosforilação , Curva ROC , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Tirosina/química , Tirosina/metabolismo
12.
Ecotoxicol Environ Saf ; 228: 112996, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34814005

RESUMO

The quick identification of heavy metals is of major importance and is beneficial for controlling the fertilizer production process in the fertilizer industries. This work aimed to use visible and near-infrared spectroscopy (Vis-NIR), Boruta, and deep learning to establish rapid heavy metals screening methods. Boruta algorithm was used to extract appropriate wavelengths, and a deep belief network (DBN) was computed to determine the amounts of various heavy metals such as chromium (Cr), cadmium (Cd), lead (Pb), and mercury (Hg) for both the entire and selected wavelengths. To assess the model, coefficient of determination (R2), root mean squared error (RMSE), and residual prediction deviation (RPD) were used to calculate the reliability of the model. The results of the selected wavelengths were excellent and much higher than the full wavelengths with R2p = 0.96, RMSEP = 0.2017 mg kg-1 and RPDpred = 5.0 for Cr; R2p = 0.91, RMSEP = 0.2832 mg kg-1 and RPDpred = 3.4 for Pb; R2p = 0.90, RMSEP = 0.2992 mg kg-1, and RPDpred = 3.3 for Hg. Descent prediction was obtained also for Cd (R2p = 0.87, RMSEP = 0.3435 mg kg-1, and RPDpred = 2.7). To further assess the robustness of the DBN, it was compared with conventional machine learning methods such as support vector machine for regression (SVR), k nearest neighbor (KNN), and partial least squares (PLS). The overall results indicated that the Vis-NIR technique coupled with Boruta and DBN could be reliable and accurate for screening heavy metals in organic fertilizers.

13.
Chaos ; 31(10): 101106, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717312

RESUMO

One must be aware of the black-box problem by applying machine learning models to analyze high-dimensional neuroimaging data. It is due to a lack of understanding of the internal algorithms or the input features upon which most models make decisions despite outstanding performance in classification, pattern recognition, and prediction. Here, we approach the fundamentally high-dimensional problem of classifying cognitive brain states based on functional connectivity by selecting and interpreting the most relevant input features. Specifically, we consider the alterations in the cortical synchrony under a prolonged cognitive load. Our study highlights the advances of this machine learning method in building a robust classification model and percept-related prestimulus connectivity changes over the conventional trial-averaged statistical analysis.


Assuntos
Aprendizado de Máquina , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo , Cognição
14.
Genomics ; 112(1): 276-285, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779939

RESUMO

Nuclear receptor proteins (NRPs) perform a vital role in regulating gene expression. With the rapidity growth of NRPs in post-genomic era, it is highly recommendable to identify NRPs and their sub-families accurately from their primary sequences. Several conventional methods have been used for discrimination of NRPs and their sub-families, but did not achieve considerable results. In a sequel, a two-level new computational model "iNR-2 L" is developed. Two discrete methods namely: Dipeptide Composition and Tripeptide Composition were used to formulate NRPs sequences. Further, both the descriptor spaces were merged to construct hybrid space. Furthermore, feature selection technique minimum redundancy and maximum relevance was employed in order to select salient features as well as reduce the noise and redundancy. The experiential outcomes exhibited that the proposed model iNR-2 L achieved outstanding results. It is anticipated that the proposed computational model might be a practical and effective tool for academia and research community.


Assuntos
Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/classificação , Análise de Sequência de Proteína/métodos , Biologia Computacional/métodos , Dipeptídeos/química , Redes Neurais de Computação , Oligopeptídeos/química , Máquina de Vetores de Suporte
15.
Genomics ; 112(2): 1565-1574, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31526842

RESUMO

Bacteriophage virion proteins (BVPs) are bacterial viruses that have a great impact on different biological functions of bacteria. They are significantly used in genetic engineering and phage therapy applications. Correct identification of BVP through conventional pathogen methods are slow and expensive. Thus, designing a Bioinformatics predictor is urgently desirable to accelerate correct identification of BVPs within a huge volume of proteins. However, available prediction tools performance is inadequate due to the lack of useful feature representation and severe imbalance issue. In the present study, we propose an intelligent model, called Pred-BVP-Unb for discrimination of BVPs that employed three nominal sequences-driven descriptors, i.e. Bi-PSSM evolutionary information, composition & translation, and split amino acid composition. The imbalance phenomena between classes were coped with the help of a synthetic minority oversampling technique. The essential attributes are selected by a robust algorithm called recursive feature elimination. Finally, the optimal feature space is provided to support vector machine classifier using a radial base kernel in order to train the model. Our predictor remarkably outperforms than existing approaches in the literature by achieving the highest accuracy of 92.54% and 83.06% respectively on the benchmark and independent datasets. We expect that Pred-BVP-Unb tool can provide useful hints for designing antibacterial drugs and also helpful to expedite large scale discovery of new bacteriophage virion proteins. The source code and all datasets are publicly available at https://github.com/Muhammad-Arif-NUST/BVP_Pred_Unb.


Assuntos
Análise de Sequência de Proteína/métodos , Software , Proteínas Estruturais Virais/genética , Bacteriófagos/genética , Evolução Molecular , Máquina de Vetores de Suporte , Proteínas Estruturais Virais/química , Vírion/genética
16.
Sensors (Basel) ; 21(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34300620

RESUMO

Organic fertilizer is a key component of agricultural sustainability and significantly contributes to the improvement of soil fertility. The values of nutrients such as organic matter and nitrogen in organic fertilizers positively affect plant growth and cause environmental problems when used in large amounts. Hence the importance of implementing fast detection of nitrogen (N) and organic matter (OM). This paper examines the feasibility of a framework that combined a particle swarm optimization (PSO) and two multiple stacked generalizations to determine the amount of nitrogen and organic matter in organic-fertilizer using visible near-infrared spectroscopy (Vis-NIR). The first multiple stacked generalizations for classification coupled with PSO (FSGC-PSO) were for feature selection purposes, while the second stacked generalizations for regression (SSGR) improved the detection of nitrogen and organic matter. The computation of root means square error (RMSE) and the coefficient of determination for calibration and prediction set (R2) was used to gauge the different models. The obtained FSGC-PSO subset combined with SSGR achieved significantly better prediction results than conventional methods such as Ridge, support vector machine (SVM), and partial least square (PLS) for both nitrogen (R2p = 0.9989, root mean square error of prediction (RMSEP) = 0.031 and limit of detection (LOD) = 2.97) and organic matter (R2p = 0.9972, RMSEP = 0.051 and LOD = 2.97). Therefore, our settled approach can be implemented as a promising way to monitor and evaluate the amount of N and OM in organic fertilizer.


Assuntos
Fertilizantes , Espectroscopia de Luz Próxima ao Infravermelho , Análise dos Mínimos Quadrados , Nitrogênio , Máquina de Vetores de Suporte
17.
Sensors (Basel) ; 21(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34450982

RESUMO

This paper proposes an encryption-based image watermarking scheme using a combination of second-level discrete wavelet transform (2DWT) and discrete cosine transform (DCT) with an auto extraction feature. The 2DWT has been selected based on the analysis of the trade-off between imperceptibility of the watermark and embedding capacity at various levels of decomposition. DCT operation is applied to the selected area to gather the image coefficients into a single vector using a zig-zig operation. We have utilized the same random bit sequence as the watermark and seed for the embedding zone coefficient. The quality of the reconstructed image was measured according to bit correction rate, peak signal-to-noise ratio (PSNR), and similarity index. Experimental results demonstrated that the proposed scheme is highly robust under different types of image-processing attacks. Several image attacks, e.g., JPEG compression, filtering, noise addition, cropping, sharpening, and bit-plane removal, were examined on watermarked images, and the results of our proposed method outstripped existing methods, especially in terms of the bit correction ratio (100%), which is a measure of bit restoration. The results were also highly satisfactory in terms of the quality of the reconstructed image, which demonstrated high imperceptibility in terms of peak signal-to-noise ratio (PSNR ≥ 40 dB) and structural similarity (SSIM ≥ 0.9) under different image attacks.

18.
Sensors (Basel) ; 21(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502636

RESUMO

Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the last decades, several groundbreaking research has been conducted in this domain. Still, no comprehensive review that covers the BCI domain completely has been conducted yet. Hence, a comprehensive overview of the BCI domain is presented in this study. This study covers several applications of BCI and upholds the significance of this domain. Then, each element of BCI systems, including techniques, datasets, feature extraction methods, evaluation measurement matrices, existing BCI algorithms, and classifiers, are explained concisely. In addition, a brief overview of the technologies or hardware, mostly sensors used in BCI, is appended. Finally, the paper investigates several unsolved challenges of the BCI and explains them with possible solutions.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Encéfalo , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Interface Usuário-Computador
19.
Anal Biochem ; 589: 113494, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31693872

RESUMO

Identification of DNA-binding proteins (DNA-BPs) is a hot issue in protein science due to its key role in various biological processes. These processes are highly concerned with DNA-binding protein types. DNA-BPs are classified into single-stranded DNA-binding proteins (SSBs) and double-stranded DNA-binding proteins (DSBs). SSBs mainly involved in DNA recombination, replication, and repair, while DSBs regulate transcription process, DNA cleavage, and chromosome packaging. In spite of the aforementioned significance, few methods have been proposed for discrimination of SSBs and DSBs. Therefore, more predictors with favorable performance are indispensable. In this work, we present an innovative predictor, called SDBP-Pred with a novel feature descriptor, named consensus sequence-based K-segmentation position-specific scoring matrix (CSKS-PSSM). We encoded the local discriminative features concealed in PSSM via K-segmentation strategy and the global potential features by applying the notion of the consensus sequence. The obtained feature vector then input to support vector machine (SVM) with linear, polynomial and radial base function (RBF) kernels. Our model with SVM-RBF achieved the highest accuracies on three tests namely jackknife, 10-fold, and independent tests, respectively than the recent method. The obtained prediction results illustrate the superlative prediction performance of SDBP-Pred over existing studies in the literature so far.


Assuntos
Proteínas de Ligação a DNA/química , Máquina de Vetores de Suporte , Sequência de Aminoácidos , Biologia Computacional/métodos , Sequência Consenso , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto
20.
Theor Appl Genet ; 133(9): 2673-2683, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488302

RESUMO

KEY MESSAGE: Wheat blast resistance in Caninde#1 is controlled by a major QTL on 2NS/2AS translocation and multiple minor QTL in an additive mode. Wheat blast (WB) is a devastating disease in South America, and it recently also emerged in Bangladesh. Host resistance to WB has relied heavily on the 2NS/2AS translocation, but the responsible QTL has not been mapped and its phenotypic effects in different environments have not been reported. In the current study, a recombinant inbred line population with 298 progenies was generated, with the female and male parents being Caninde#1 (with 2NS) and Alondra (without 2NS), respectively. Phenotyping was carried out in two locations in Bolivia, namely Quirusillas and Okinawa, and one location in Bangladesh, Jashore, with two sowing dates in each of the two cropping seasons in each location, during the years 2017-2019. Genotyping was performed with the DArTseq® technology along with five previously reported STS markers in the 2NS region. QTL mapping identified a major and consistent QTL on 2NS/2AS region, explaining between 22.4 and 50.1% of the phenotypic variation in different environments. Additional QTL were detected on chromosomes 1AS, 2BL, 3AL, 4BS, 4DL and 7BS, all additive to the 2NS QTL and showing phenotypic effects less than 10%. Two codominant STS markers, WGGB156 and WGGB159, were linked proximally to the 2NS/2AS QTL with a genetic distance of 0.9 cM, being potentially useful in marker-assisted selection.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Bangladesh , Basidiomycota/patogenicidade , Bolívia , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA