Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 11: e15800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551343

RESUMO

Background: The discovery of cryptic species complexes within morphologically established species comes with challenges in the classification and handling of these species. We hardly know to what extent species within a species complex differ ecologically. Such knowledge is essential to assess the vulnerability of individual genetic lineages in the face of global change. The abiotic conditions, i.e., the Grinnellian niche that a genetic lineage colonizes, provides insights into how diverse the ecological requirements of each evolutionary lineage are within a species complex. Material and Methods: We sampled the cryptic species complex of the amphipod Gammarus roeselii from Central Germany to Greece and identified genetic lineages based on cytochrome c oxidase subunit I (COI) barcoding. At the same time, we recorded various abiotic parameters and local pollution parameters using a series of in vitro assays to then characterize the Grinnellian niches of the morphospecies (i.e., Gammarus roeselii sensu lato) as well as each genetic lineage. Local pollution can be a significant factor explaining current and future distributions in times of increasing production and release of chemicals into surface waters. Results: We identified five spatially structured genetic lineages in our dataset that differed to varying degrees in their Grinnellian niche. In some cases, the niches were very similar despite the geographical separation of lineages, supporting the hypothesis of niche conservatism while being allopatrically separated. In other cases, we found a small niche that was clearly different from those of other genetic lineages. Conclusion: The variable niches and overlaps of different dimensions make the G. roeselii species complex a promising model system to further study ecological, phenotypic and functional differentiation within this species complex. In general, our results show that the Grinnellian niches of genetically distinct molecular operational taxonomic units (MOTUs) within a cryptic species complex can differ significantly between each other, calling for closer inspection of cryptic species in a conservational and biodiversity context.


Assuntos
Anfípodes , Animais , Anfípodes/genética , Biodiversidade , Filogenia , Geografia , Evolução Biológica
2.
Environ Toxicol Chem ; 42(9): 1889-1914, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37314101

RESUMO

The advent of genetic methods has led to the discovery of an increasing number of species that previously could not be distinguished from each other on the basis of morphological characteristics. Even though there has been an exponential growth of publications on cryptic species, such species are rarely considered in ecotoxicology. Thus, the particular question of ecological differentiation and the sensitivity of closely related cryptic species is rarely addressed. Tackling this question, however, is of key importance for evolutionary ecology, conservation biology, and, in particular, regulatory ecotoxicology. At the same time, the use of species with (known or unknown) cryptic diversity might be a reason for the lack of reproducibility of ecotoxicological experiments and implies a false extrapolation of the findings. Our critical review includes a database and literature search through which we investigated how many of the species most frequently used in ecotoxicological assessments show evidence of cryptic diversity. We found a high proportion of reports indicating overlooked species diversity, especially in invertebrates. In terrestrial and aquatic realms, at least 67% and 54% of commonly used species, respectively, were identified as cryptic species complexes. The issue is less prominent in vertebrates, in which we found evidence for cryptic species complexes in 27% of aquatic and 6.7% of terrestrial vertebrates. We further exemplified why different evolutionary histories may significantly determine cryptic species' ecology and sensitivity to pollutants. This in turn may have a major impact on the results of ecotoxicological tests and, consequently, the outcome of environmental risk assessments. Finally, we provide a brief guideline on how to deal practically with cryptic diversity in ecotoxicological studies in general and its implementation in risk assessment procedures in particular. Environ Toxicol Chem 2023;42:1889-1914. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Poluentes Ambientais , Animais , Ecotoxicologia/métodos , Reprodutibilidade dos Testes , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Invertebrados , Medição de Risco
3.
Ecol Evol ; 12(5): e8868, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600684

RESUMO

Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non-native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non-native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common. The North Sea-Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non-native species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA