Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 583(7818): 834-838, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32408338

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/virologia , Mesocricetus/virologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Aerossóis , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Antígenos Virais/isolamento & purificação , Antígenos Virais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , Betacoronavirus/metabolismo , Brônquios/patologia , Brônquios/virologia , COVID-19 , Infecções por Coronavirus/imunologia , Duodeno/virologia , Fômites/virologia , Abrigo para Animais , Rim/virologia , Masculino , Mesocricetus/imunologia , Mucosa Nasal/virologia , Pandemias , Pneumonia Viral/imunologia , RNA Viral/análise , SARS-CoV-2 , Carga Viral , Redução de Peso
2.
Lancet Microbe ; 4(9): e670-e682, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549680

RESUMO

BACKGROUND: Few trials have compared homologous and heterologous third doses of COVID-19 vaccination with inactivated vaccines and mRNA vaccines. The aim of this study was to assess immune responses, safety, and efficacy against SARS-CoV-2 infection following homologous or heterologous third-dose COVID-19 vaccination with either one dose of CoronaVac (Sinovac Biotech; inactivated vaccine) or BNT162b2 (Fosun Pharma-BioNTech; mRNA vaccine). METHODS: This is an ongoing, randomised, allocation-concealed, open-label, comparator-controlled trial in adults aged 18 years or older enrolled from the community in Hong Kong, who had received two doses of CoronaVac or BNT162b2 at least 6 months earlier. Participants were randomly assigned, using a computer-generated sequence, in a 1:1 ratio with allocation concealment to receive a (third) dose of CoronaVac or BNT162b2 (ancestral virus strain), stratified by types of previous COVID-19 vaccination (homologous two doses of CoronaVac or BNT162b2). Participants were unmasked to group allocation after vaccination. The primary endpoint was serum neutralising antibodies against the ancestral virus at day 28 after vaccination in each group, measured as plaque reduction neutralisation test (PRNT50) geometric mean titre (GMT). Surrogate virus neutralisation test (sVNT) mean inhibition percentage and PRNT50 titres against omicron BA.1 and BA.2 subvariants were also measured. Secondary endpoints included geometric mean fold rise (GMFR) in antibody titres; incidence of solicited local and systemic adverse events; IFNγ+ CD4+ and IFNγ+ CD8+ T-cell responses at days 7 and 28; and incidence of COVID-19. Within-group comparisons of boost in immunogenicity from baseline and between-group comparisons were done according to intervention received (ie, per protocol) by paired and unpaired t test, respectively, and cumulative incidence of infection was compared using Kaplan-Meier curves and a proportional hazards model to estimate hazard ratio. The trial is registered with ClinicalTrials.gov, NCT05057169. FINDINGS: We enrolled participants from Nov 12, 2021, to Jan 27, 2022. We vaccinated 219 participants who previously received two doses of CoronaVac, including 101 randomly assigned to receive CoronaVac (CC-C) and 118 randomly assigned to receive BNT162b2 (CC-B) as their third dose; and 232 participants who previously received two doses of BNT162b2, including 118 randomly assigned to receive CoronaVac (BB-C) and 114 randomly assigned to receive BNT162b2 (BB-B) as their third dose. The PRNT50 GMTs on day 28 against ancestral virus were 109, 905, 92, and 816; against omicron BA.1 were 9, 75, 8, and 86; and against omicron BA.2 were 6, 80, 6, and 67 in the CC-C, CC-B, BB-C, and BB-B groups, respectively. Mean sVNT inhibition percentages on day 28 against ancestral virus were 83%, 96%, 87%, and 96%; against omicron BA.1 were 15%, 58%, 19%, and 69%; and against omicron BA.2 were 43%, 85%, 50%, and 90%, in the CC-C, CC-B, BB-C, and BB-B groups, respectively. Participants who had previously received two doses of CoronaVac and a BNT162b2 third dose had a GMFR of 12 (p<0·0001) compared with those who received a CoronaVac third dose; similarly, those who had received two doses of BNT162b2 and a BNT162b2 third dose had a GMFR of 8 (p<0·0001). No differences in CD4+ and CD8+ T-cell responses were observed between groups. We did not identify any vaccination-related hospitalisation within 1 month after vaccination. We identified 58 infections when omicron BA.2 was predominantly circulating, with cumulative incidence of 15·3% and 15·4% in the CC-C and CC-B groups, respectively (p=0·93), and 16·7% and 14·0% in the BB-C and BB-B groups, respectively (p=0·56). INTERPRETATION: Similar levels of incidence of, presumably, omicron BA.2 infections were observed in each group despite very weak antibody responses to BA.2 in the recipients of a CoronaVac third dose. Further research is warranted to identify appropriate correlates of protection for inactivated COVID-19 vaccines. FUNDING: Health and Medical Research Fund, Hong Kong. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos , Imunidade
3.
Antiviral Res ; 178: 104786, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251767

RESUMO

An escalating pandemic by the novel SARS-CoV-2 virus is impacting global health and effective therapeutic options are urgently needed. We evaluated the in vitro antiviral effect of compounds that were previously reported to inhibit coronavirus replication and compounds that are currently under evaluation in clinical trials for SARS-CoV-2 patients. We report the antiviral effect of remdesivir, lopinavir, homorringtonine, and emetine against SARS-CoV-2 virus in Vero E6 cells with the estimated 50% effective concentration at 23.15 µM, 26.63 µM, 2.55 µM and 0.46 µM, respectively. Ribavirin or favipiravir that are currently evaluated under clinical trials showed no inhibition at 100 µM. Synergy between remdesivir and emetine was observed, and remdesivir at 6.25 µM in combination with emetine at 0.195 µM may achieve 64.9% inhibition in viral yield. Combinational therapy may help to reduce the effective concentration of compounds below the therapeutic plasma concentrations and provide better clinical benefits.


Assuntos
Antimetabólitos/farmacologia , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Emetina/farmacologia , Mepesuccinato de Omacetaxina/farmacologia , Lopinavir/farmacologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Amidas/farmacologia , Animais , Betacoronavirus/fisiologia , COVID-19 , Chlorocebus aethiops , Combinação de Medicamentos , Células Epiteliais , Humanos , Pandemias , Pirazinas/farmacologia , Ribavirina/farmacologia , SARS-CoV-2 , Células Vero , Tratamento Farmacológico da COVID-19
4.
AIDS ; 33(9): 1421-1429, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932962

RESUMO

OBJECTIVES: CD8 T cells recognize human leukocyte antigen-peptide complex through the T-cell receptor. Although amino acid variation in T-cell receptor variable chains often affects antigen specificity, dimorphism in the beta chain constant region (TRBC1 and TRBC2) is not thought to affect T-cell function. A recent study suggested that adoptive transfer of TRBC1-specific chimeric antigen-receptor-T cells provided an option for T-cell leukemia therapy that preserved T-cell immunity in the TRBC2 subset. This raises an important question as to whether TRBC1T cells are qualitatively different from TRBC2T cells. DESIGN: Cross-sectional study. METHODS: Sixty-six antiretroviral therapy-naive HIV-infected individuals, including 19 viraemic controllers and 47 noncontrollers, were enrolled. Peripheral blood mononuclear cells were isolated for T-cell functional assays, tetramer analyses, TRBC1 staining and immunophenotyping. RESULTS: Viraemic controllers had a higher proportion of circulating TRBC1T cells than noncontrollers, raising the possibility that TRBC1T cells might be associated with HIV control. TRBC1T cells also showed more functional T-cell responses against both HIV and cytomegalovirus (P < 0.01). The immunophenotypes of TRBC1-bearing T cells were skewed towards naive and central memory phenotypes, whereas the majority of TRBC2-expressing T cells were terminally differentiated. Inverse correlations were observed between %TRBC1T cells and HIV plasma viral load, which was most pronounced for CD8 T cells (r = -0.7096, P = 0.00002357). CONCLUSION: These data suggest that TRBC1T-cell responses are of better quality than their TRBC2 counterparts, which should be considered in immunotherapeutic strategies for HIV infection. Conversely, depletion of TRBC1T cells as part of the treatment of TRBC1 T-cell malignancies may lead to compromised T-cell response quality.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Variação Genética , Infecções por HIV/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Subpopulações de Linfócitos T/imunologia , Adulto , Estudos Transversais , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Feminino , HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA