Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Health Insights ; 16: 11786302221107786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782319

RESUMO

In the early stages of response to the SARS-CoV-2 pandemic, it was imperative for researchers to rapidly determine what animal species may be susceptible to the virus, under low knowledge and high uncertainty conditions. In this scoping review, the animal species being evaluated for SARS-CoV-2 susceptibility, the methods used to evaluate susceptibility, and comparing the evaluations between different studies were conducted. Using the PRISMA-ScR methodology, publications and reports from peer-reviewed and gray literature sources were collected from databases, Google Scholar, the World Organization for Animal Health (OIE), snowballing, and recommendations from experts. Inclusion and relevance criteria were applied, and information was subsequently extracted, categorized, summarized, and analyzed. Ninety seven sources (publications and reports) were identified which investigated 649 animal species from eight different classes: Mammalia, Aves, Actinopterygii, Reptilia, Amphibia, Insecta, Chondrichthyes, and Coelacanthimorpha. Sources used four different methods to evaluate susceptibility, in silico, in vitro, in vivo, and epidemiological analysis. Along with the different methods, how each source described "susceptibility" and evaluated the susceptibility of different animal species to SARS-CoV-2 varied, with conflicting susceptibility evaluations evident between different sources. Early in the pandemic, in silico methods were used the most to predict animal species susceptibility to SARS-CoV-2 and helped guide more costly and intensive studies using in vivo or epidemiological analyses. However, the limitations of all methods must be recognized, and evaluations made by in silico and in vitro should be re-evaluated when more information becomes available, such as demonstrated susceptibility through in vivo and epidemiological analysis.

2.
J Parasitol ; 108(4): 322-329, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35877155

RESUMO

Orthostrongylus macrotis (Dikmans, 1931) is a protostrongylid lungworm in wild ungulates from western North America, including mule and Columbia black-tailed deer, pronghorn, and rarely moose and elk. The lack of morphological data for certain developmental stages of O. macrotis and the unresolved taxonomic status of the genus indicate a more detailed morphological characterization of the species is necessary. We provide a detailed description of first-stage larvae (L1) of O. macrotis including morphological, morphometric, and molecular data. Species identity was confirmed based on molecular sequence data from the internal transcribed spacer subunit 2 (ITS-2) and large subunit (28S) rDNA. A fragment of the cytochrome oxidase c subunit 1 (COI) was also sequenced, followed by the determination of genetic distance and phylogenetic analyses. Integrated data describing L1 of O. macrotis contributes to a broader understanding of the parasite fauna of wild ungulates from North America and may be of relevance for a future revision of the genus. Further, we outline information for differentiation among species of North American protostrongylids, with typical spike-tailed L1s, circulating among free-ranging and semi-domestic ungulates.


Assuntos
Cervos , Metastrongyloidea , Infecções por Strongylida , Animais , DNA Espaçador Ribossômico/genética , Cervos/parasitologia , Larva/genética , América do Norte , Filogenia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/veterinária
3.
Sci Rep ; 10(1): 17323, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057173

RESUMO

Rapid climate warming in the Arctic results in multifaceted disruption of biodiversity, faunal structure, and ecosystem health. Hypotheses have linked range expansion and emergence of parasites and diseases to accelerating warming globally but empirical studies demonstrating causality are rare. Using historical data and recent surveys as baselines, we explored climatological drivers for Arctic warming as determinants of range expansion for two temperature-dependent lungworms, Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis, of muskoxen (Ovibos moschatus) and caribou (Rangifer tarandus), in the Canadian Arctic Archipelago from 1980 through 2017. Our field data shows a substantial northward shift of the northern edge of the range for both parasites and increased abundance across the expanded ranges during the last decade. Mechanistic models parameterized with parasites' thermal requirements demonstrated that geographical colonization tracked spatial expansion of permissive environments, with a temporal lag. Subtle differences in life histories, thermal requirements of closely related parasites, climate oscillations and shifting thermal balances across environments influence faunal assembly and biodiversity. Our findings support that persistence of host-parasite assemblages reflects capacities of parasites to utilize host and environmental resources in an ecological arena of fluctuating opportunity (alternating trends in exploration and exploitation) driving shifting boundaries for distribution across spatial and temporal scales.


Assuntos
Ecossistema , Aquecimento Global , Enteropatias Parasitárias/veterinária , Ruminantes/parasitologia , Infecções por Strongylida/veterinária , Estrongilídios/isolamento & purificação , Distribuição Animal , Animais , Regiões Árticas , Fezes/parasitologia , Interações Hospedeiro-Parasita , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/parasitologia , Larva , Estágios do Ciclo de Vida , Rena/parasitologia , Especificidade da Espécie , Estrongilídios/crescimento & desenvolvimento , Infecções por Strongylida/epidemiologia , Infecções por Strongylida/parasitologia
4.
Int J Parasitol Parasites Wildl ; 13: 269-274, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312858

RESUMO

Parasitic zoonotic nematodes of the genus Trichinella circulate in wildlife and domestic hosts worldwide through the ingestion of infected meat. Due to their role as scavengers and predators in terrestrial and marine arctic ecosystems, Arctic foxes (Vulpes lagopus) are ideal sentinels for the detection of Trichinella spp. In this study, we determined the prevalence, larval intensity, and species of Trichinella from 91 trapped Arctic foxes collected around the northern Canadian communities of Sachs Harbour (Ikaahuk) on Banks Island (n = 23), and Ulukhaktok and Cambridge Bay (Ikaluktutiak) on Victoria Island (n = 68). Using pepsin-HCl digestion, larvae of Trichinella spp. were recovered from the left forelimb muscle (flexor carpi ulnaris) in 19 of the 91 foxes (21% prevalence, 95% CI: 14-30%). For the first time in Arctic foxes in Canada, Trichinella species were identified using multiplex PCR that was followed up with PCR-RFLP to distinguish between T. nativa and T. chanchalensis. All infected foxes harbored T. nativa, and one fox was co-infected with Trichinella T6; the latter is a new host record. Age of the fox was significantly associated with Trichinella spp. infection and the odds of being infected were three times higher in foxes ≥2 years of age (p = 0.026), indicating cumulative exposure with age. While Arctic foxes are seldom harvested for human consumption, they serve as sentinel hosts of Trichinella spp., confirming the presence of the parasite in wildlife in the region.

5.
Int J Parasitol Parasites Wildl ; 13: 178-185, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33134077

RESUMO

Parasites are fundamental components within all ecosystems, shaping interaction webs, host population dynamics and behaviour. Despite this, baseline data is lacking to understand the parasite ecology of many Arctic species, including the wolverine (Gulo gulo), a top Arctic predator and scavenger. Here, we combined traditional count methods (i.e. adult helminth recovery, where taxonomy was confirmed by molecular identification) with 18S rRNA high-throughput sequencing to document the wolverine parasite community. Further, we investigated whether the abundance of parasites detected using traditional methods were associated with host metadata, latitude, and longitude (ranging from the northern limit of the boreal forest to the low Arctic and Arctic tundra in Nunavut, Canada). Adult parasites in intestinal contents were identified as Baylisascaris devosi in 72% (n = 39) of wolverines and Taenia spp. in 22% (n = 12), of which specimens from 2 wolverines were identified as T. twitchelli based on COX1 sequence. 18S rRNA high-throughput sequencing on DNA extracted from faeces detected additional parasites, including a pseudophyllid cestode (Diplogonoporus spp. or Diphyllobothrium spp.), two metastrongyloid lungworms (Angiostrongylus spp. or Aelurostrongylus spp., and Crenosoma spp.), an ascarid nematode (Ascaris spp. or Toxocara spp.), a Trichinella spp. nematode, and the protozoan Sarcocystis spp., though each at a prevalence less than 13% (n = 7). The abundance of B. devosi significantly decreased with latitude (slope = -0.68; R2 = 0.17; P = 0.004), suggesting a northerly limit in distribution. We describe B. devosi and T. twitchelli in Canadian wolverines for the first time since 1978, and extend the recorded geographic distribution of these parasites ca 2000 km to the East and into the tundra ecosystem. Our findings illustrate the value of molecular methods in support of traditional methods, encouraging additional work to improve the advancement of molecular screening for parasites.

6.
Int J Parasitol ; 50(4): 277-287, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32171846

RESUMO

Understanding parasite diversity and distribution is essential in managing the potential impact of parasitic diseases in animals and people. Imperfect diagnostic methods, however, may conceal cryptic species. Here, we report the discovery and phylogeography of a previously unrecognized species of Trichinella in wolverine (Gulo gulo) from northwestern Canada that was indistinguishable from T. nativa using the standard multiplex PCR assay based on the expansion segment 5 (ESV) of ribosomal DNA. The novel genotype, designated as T13, was discovered when sequencing the mitochondrial genome. Phylogenetic analyses of the mitochondrial genome and of 15 concatenated single copy orthologs of nuclear DNA indicated a common ancestor for the encapsulated clade is shared by a subclade containing Trichinella spiralis and Trichinella nelsoni, and a subclade containing T13 and remaining taxa: T12 + (T2 + T6) + [(T5 + T9) + (T3 + T8)]. Of 95 individual hosts from 12 species of mammalian carnivores from northwestern Canada from which larvae were identified as T. nativa on multiplex PCR, only wolverines were infected with T13 (14 of 42 individuals). These infections were single or mixed with T. nativa and/or T6. Visual examination and motility testing confirmed that T13 is encapsulated and likely freeze-tolerant. We developed a new Polymerase Chain Reaction-Restriction Fragment Length Polymorphism which unequivocally distinguishes between T13 and T. nativa. We propose Trichinella chanchalensis n. sp. for T13, based on significant genetic divergence from other species of Trichinella and broad-based sampling of the Trichinella genome. Exploration of Alaskan and Siberian isolates may contribute to further resolution of a phylogeographically complex history for species of Trichinella across Beringia, including Trichinella chanchalensis n. sp. (T13).


Assuntos
Mustelidae/parasitologia , Trichinella , Alaska , Animais , Canadá , DNA de Helmintos/genética , DNA Ribossômico/genética , Genoma Mitocondrial/genética , Estágios do Ciclo de Vida , Filogenia , Filogeografia , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/veterinária , Sibéria , Trichinella/anatomia & histologia , Trichinella/classificação , Trichinella/genética , Trichinella/isolamento & purificação , Trichinella spiralis/anatomia & histologia , Trichinella spiralis/classificação , Trichinella spiralis/genética , Trichinella spiralis/isolamento & purificação , Triquinelose/parasitologia , Triquinelose/veterinária
7.
Parasit Vectors ; 11(1): 446, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30071899

RESUMO

Unfortunately, the original version of this article [1] contained an error.

8.
Parasit Vectors ; 11(1): 400, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986762

RESUMO

BACKGROUND: Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis are two potentially pathogenic lungworms of caribou and muskoxen in the Canadian Arctic. These parasites are currently undergoing northward range expansion at differential rates. It is hypothesized that their invasion and spread to the Canadian Arctic Archipelago are in part driven by climate warming. However, very little is known regarding their physiological ecology, limiting our ability to parameterize ecological models to test these hypotheses and make meaningful predictions. In this study, the developmental parameters of V. eleguneniensis inside a gastropod intermediate host were determined and freezing survival of U. pallikuukensis and V. eleguneniensis were compared. METHODS: Slug intermediate hosts, Deroceras laeve, were collected from their natural habitat and experimentally infected with first-stage larvae (L1) of V. eleguneniensis. Development of L1 to third-stage larvae (L3) in D. laeve was studied at constant temperature treatments from 8.5 to 24 °C. To determine freezing survival, freshly collected L1 of both parasite species were held in water at subzero temperatures from -10 to -80 °C, and the number of L1 surviving were counted at 2, 7, 30, 90 and 180 days. RESULTS: The lower threshold temperature (T0) below which the larvae of V. eleguneniensis did not develop into L3 was 9.54 °C and the degree-days required for development (DD) was 171.25. Both U. pallikuukensis and V. eleguneniensis showed remarkable freeze tolerance: more than 80% of L1 survived across all temperatures and durations. Larval survival decreased with freezing duration but did not differ between the two species. CONCLUSION: Both U. pallikuukensis and V. eleguneniensis have high freezing survival that allows them to survive severe Arctic winters. The higher T0 and DD of V. eleguneniensis compared to U. pallikuukensis may contribute to the comparatively slower range expansion of the former. Our study advances knowledge of Arctic parasitology and provides ecological and physiological data that can be useful for parameterizing ecological models.


Assuntos
Clima , Metastrongyloidea/fisiologia , Ruminantes/parasitologia , Infecções por Strongylida/veterinária , Temperatura , Animais , Regiões Árticas , Mudança Climática , Ecologia , Ecossistema , Congelamento , Gastrópodes/parasitologia , Larva/fisiologia , Metastrongyloidea/crescimento & desenvolvimento , Metastrongyloidea/patogenicidade , Rena/parasitologia , Infecções por Strongylida/epidemiologia , Infecções por Strongylida/transmissão
9.
Int J Parasitol Parasites Wildl ; 6(3): 331-339, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29159064

RESUMO

The Protostrongylidae is a diverse family of nematodes capable of causing significant respiratory and neuromuscular disease in their ungulate and lagomorph hosts. Establishing the species diversity and abundance of the protostrongylid fauna has been hindered because the first stage larvae, commonly referred as dorsal spined larvae (DSL), that are shed in the feces are morphologically very similar among several genera. We aimed to determine the protostrongylid diversity and distribution in caribou (Rangifer tarandus groenlandicus and R. t. pearyi) in the central and high Canadian Arctic. We first developed, tested and validated a morphological diagnostic guide for the DSL of two important protostrongylids, Parelaphostrongylus andersoni and Varestrongylus eleguneniensis, and then applied this guide to determine the prevalence and intensity of infection of these parasites in fecal samples from 242 caribou. We found that DSL of V. eleguneniensis and P. andersoni can be differentiated morphologically based on the structural differences at the caudal extremity. The presentation and morphology of the dorsal spine, and caudoventral bulging at the start of the tail extension were identified as the key identifying features. The two species were found in caribou on the arctic mainland and southern Victoria Island in single and co-infections, but the prevalence and intensity of infection was low. No protostrongylids were detected in caribou from the high arctic islands. Through this study, we provide a simple, efficient, and robust method to distinguish the DSL of the two protostrongylids, and present the current status of infection in different herds of caribou of the central Canadian Arctic. We report new geographic and host records for P. andersoni infection in Dolphin and Union caribou herd.

11.
J Wildl Dis ; 52(3): 719-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27285415

RESUMO

An adult male muskox ( Ovibos moschatus ), harvested on 26 August 2014 on Victoria Island, Nunavut, in the Canadian Arctic, had proliferative dermatitis on the muzzle and fetlocks suggestive of contagious ecthyma or orf (Parapoxvirus). Histopathologic features of the lesions were consistent with this diagnosis. Orf virus DNA, phylogenetically similar to an isolate from a captive muskox of the Minnesota Zoo, US, was detected in the lesions by PCR using Parapoxvirus primers. Additionally, there was a metaphyseal abscess with a cortical fistula in the right metacarpus from which Brucella suis biovar 4 was isolated and identification supported by PCR. Brucella spp. antibodies were detected in serum. Finally, 212 nodules were dissected from the lungs. Fecal analysis and lung examination demonstrated co-infection with the lungworms Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis. The zoonotic potential of orf and rangiferine brucellosis adds an important public health dimension to this case, particularly given that muskoxen are a valuable source of food for Arctic residents. Careful examination of these pathogens at a population level is needed as they may contribute to muskox population decline and potentially constitute a driver of food insecurity for local communities. This case underscores the importance of wildlife health surveillance as a management tool to conserve wildlife populations and maintain food security in subsistence-oriented communities.


Assuntos
Brucelose/veterinária , Ectima Contagioso/patologia , Pneumopatias Parasitárias/veterinária , Infecções por Nematoides/veterinária , Ruminantes , Animais , Regiões Árticas/epidemiologia , Brucelose/epidemiologia , Brucelose/microbiologia , Brucelose/patologia , Canadá/epidemiologia , Ectima Contagioso/epidemiologia , Ectima Contagioso/virologia , Pneumopatias Parasitárias/epidemiologia , Pneumopatias Parasitárias/parasitologia , Pneumopatias Parasitárias/patologia , Masculino , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/parasitologia , Infecções por Nematoides/patologia , Vírus do Orf/genética , Filogenia
12.
Int J Parasitol Parasites Wildl ; 4(3): 283-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26155463

RESUMO

Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis are the two most common protostrongylid nematodes infecting muskoxen in the North American Arctic and Subarctic. First stage larvae (L1) of these lungworms have considerable morphological similarity that makes their differential diagnosis very difficult. Using light microscopy, we studied in detail the L1 of these two species and identified the key differences in morphological and morphometric attributes. Thirty L1 of each species from naturally infected muskox were heat-killed and then assessed for morphological and morphometric features that could be used for species-level differentiation. Key differentiating features include: length and morphology of the tail extension, curvature of the body, ventral post-anal transverse cuticular striations, and total body length. A laboratory guide for differentiation of L1 based on these species-specific characters was prepared and used by an experienced observer to identify an additional 35 L1 extracted from a different set of fecal samples from free-ranging muskoxen with mixed infections. The identities of these L1 were confirmed by sequence analysis of the ITS-2 region of the nuclear ribosomal DNA. Accuracy of morphological identification was 100 percent, reflecting the reliability of the proposed guide for differentiation. Using the guide, three minimally trained lab assistants each fixed and accurately identified 10 of 10 randomly selected L1. Ability to morphologically differentiate these facilitates the monitoring of overlapping range expansion of both parasites in the Canadian Arctic. Studies enabling species-level parasite identification are also critical for defining biodiversity, detecting mixed infections, and understanding host-parasite interactions. Morphological identification is a simple, reliable and cost-effective alternative to labor and equipment intensive molecular methods and can easily be performed in low resource settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA