RESUMO
The origin of the pseudogap in many strongly correlated materials has been a longstanding puzzle. Here, we present experimental evidence that many-body interactions among small Holstein polarons, i.e., the formation of bipolarons, are primarily responsible for the pseudogap in (TaSe4)2I. After weak photoexcitation of the material, we observe the appearance of both dispersive (single-particle bare band) and flat bands (single-polaron sub-bands) in the gap by using time- and angle-resolved photoemission spectroscopy. Based on Monte Carlo simulations of the Holstein model, we propose that the melting of pseudogap and emergence of new bands originate from a bipolaron to single-polaron crossover. We also observe dramatically different relaxation times for the excited in-gap states in (TaSe4)2I (â¼600 fs) compared with another 1D material Rb0.3MoO3 (â¼60 fs), which provides a new method for distinguishing between pseudogaps induced by polaronic or Luttinger-liquid many-body interactions.
RESUMO
Monolayer transition-metal dichalcogenide crystals (TMDC) can be combined with other functional materials, such as organic molecules, to form a wide range of heterostructures with tailorable properties. Although a number of works have shown that ultrafast charge transfer (CT) can occur at organic/TMDC interfaces, conditions that would facilitate the separation of interfacial CT excitons into free carriers remain unclear. Here, time-resolved and steady-state photoemission spectroscopy are used to study the potential energy landscape, charge transfer, and exciton dynamics at the zinc phthalocyanine (ZnPc)/monolayer (ML) MoS2 and ZnPc/bulk MoS2 interfaces. Surprisingly, although both interfaces have a type-II band alignment and exhibit sub-100 fs CT, the CT excitons formed at the two interfaces show drastically different evolution dynamics. The ZnPc/ML-MoS2 behaves like typical donor-acceptor interfaces in which CT excitons dissociate into electron-hole pairs. On the contrary, back electron transfer occur at ZnPc/bulk-MoS2, which results in the formation of triplet excitons in ZnPc. The difference can be explained by the different amount of band bending found in the ZnPc film deposited on ML-MoS2 and bulk-MoS2. Our work illustrates that the potential energy landscape near the interface plays an important role in the charge separation behavior. Therefore, considering the energy level alignment at the interface alone is not enough for predicting whether free charges can be generated effectively from an interface.
RESUMO
How tightly bound charge transfer (CT) excitons dissociate at organic donor-acceptor interfaces has been a long-standing question in the organic photovoltaics community. Recently, it has been proposed that exciton delocalization reduces the exciton binding energy and promotes exciton dissociation. In order to understand this mechanism, it is critical to resolve the evolution of the exciton's binding energy and coherent size with femtosecond time resolution. However, because the coherent size is just a few nanometers, it presents a major experimental challenge to capture the CT process simultaneously in the energy, spatial, and temporal domains. In this work, the challenge is overcome by using time-resolved photoemission spectroscopy. The spatial size and electronic energy of a manifold of CT states are resolved at the zinc phthalocyanine (ZnPc)-fullerene (C60) donor-acceptor interface. It is found that CT at the interface first populates delocalized CT excitons with a coherent size of 4 nm. Then, this delocalized CT exciton relaxes in energy to produce CT states with delocalization sizes in the range of 1-3 nm. While the CT process from ZnPc to C60 occurs in about 150 fs after photoexcitation, the localization and energy relaxation occur in 2 ps. The multidimensional view on how CT excitons evolve in time, space, and energy provides key information to understand the exciton dissociation mechanism and to design nanostructures for effective charge separation.
RESUMO
Charge density wave (CDW) order is an emergent quantum phase that is characterized by periodic lattice distortion and charge density modulation, often present near superconducting transitions. Here, we uncover a novel inverted CDW state by using a femtosecond laser to coherently reverse the star-of-David lattice distortion in 1T-TaSe2. We track the signature of this novel CDW state using time- and angle-resolved photoemission spectroscopy and the time-dependent density functional theory to validate that it is associated with a unique lattice and charge arrangement never before realized. The dynamic electronic structure further reveals its novel properties that are characterized by an increased density of states near the Fermi level, high metallicity, and altered electron-phonon couplings. Our results demonstrate how ultrafast lasers can be used to create unique states in materials by manipulating charge-lattice orders and couplings.
RESUMO
Excited-state electron transfer (ET) across molecules/transition metal dichalcogenide crystal (TMDC) interfaces is a critical process for the functioning of various organic/TMDC hybrid optoelectronic devices. Therefore, it is important to understand the fundamental factors that can facilitate or limit the ET rate. Here it is found that an undesirable combination of the interfacial band offset and the spatial dimensionality of the delocalized electron wave function can significantly slow down the ET process. Specifically, it is found that whereas the ET rate from TMDCs (MoS2 and WSe2) to fullerenes is relative insensitive to the band offset, the ET rate from TMDCs to perylene molecules can be reduced by an order of magnitude when the band offset is large. For the perylene crystal, the sensitivity of the ET rate on the band offset is explained by the 1D nature of the electronic wave function, which limits the availability of states with the appropriate energy to accept the electron.
RESUMO
In organic and low-dimensional materials, electrons and holes are bound together to form excitons. Effective exciton dissociation at interfaces is essential for applications such as photovoltaics and photosensing. Here, we present an interface-sensitive, time-resolved method that utilizes graphene field effect transistor as an electric-field sensor to measure the charge separation dynamics and yield at donor-acceptor interfaces. Compared to other interface-sensitive spectroscopy techniques, our method has a much reduced measurement time and can be easily adapted to different material interfaces. Hence, it can be used as a high throughput screening tool to evaluate the charge separation efficiency in a large number of systems. By using zinc phthalocyanine/fullerene interface, we demonstrate how this method can be used to quantify the charge separation dynamics and yield at a typical organic donor-acceptor interface.
RESUMO
At organic semiconductor interfaces, an electron and a hole can be bound Coulombically to form an interfacial charge transfer (CT) exciton. It is still under debate how a CT exciton can overcome its strong binding and dissociate into free carriers. Experimentally, capturing the evolution of the CT exciton on time (fs-ps) and length scales (nm) in which the dissociation process occurs is challenging. To overcome this challenge, time-resolved two photon photoemission spectroscopy is used to measure the binding energies and electronic coherent sizes of a series of CT states at organic interfaces, and capture the temporal dynamics of these CT excitons after their excitation. Using zinc phthalocyanine (ZnPc)/fullerene (C60) interface as a model system, it is shown that the interfacial CT process first populates a hot CT state with a coherent size of ~4 nm. Hot and delocalized CT excitons subsequently relax into CT excitons with lower energies and smaller coherent sizes. To correlate the CT exciton properties with the dissociation efficiency, we develop a method that exploits graphene field effect transistors to probe the rate and yield of free carrier generation at the interface. Our results show that exciton dissociation can be more efficient if one can extract electrons from the hot and delocalized CT state. We propose a cascade structure that would serve this purpose.
RESUMO
Two-dimensional transition-metal dichalcogenides (TMD) can be combined with other materials such as organic small molecules to form hybrid van der Waals heterostructures. Because of different properties possessed by these two materials, the hybrid interface can exhibit properties that cannot be found in either of the materials. In this work, the zinc phthalocyanine (ZnPc)-molybdenum disulfide (MoS2) interface is used as a model system to study the charge transfer at these interfaces. It is found that the optically excited singlet exciton in ZnPc transfers its electron to MoS2 in 80 fs after photoexcitation to form a charge transfer exciton. However, back electron transfer occurs on the time scale of â¼1-100 ps, which results in the formation of a triplet exciton in the ZnPc layer. This relatively fast singlet-triplet transition is feasible because of the large singlet-triplet splitting in organic materials and the strong spin-orbit coupling in TMD crystals. The back electron transfer would reduce the yield of free carrier generation at the heterojunction if it is not avoided. On the other hand, the spin-selective back electron transfer could be used to manipulate electron spin in hybrid electronic devices.
RESUMO
The electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides. In this work, metal-phthalocyanine molecules is used as a model system to demonstrate that two-dimensional crystals such as graphene can serve as a template for growing high quality, ultra-flat organic films with a face-on orientation. Furthermore, the molecule-substrate interaction is varied systematically from strong to weak interaction regime with the interaction strength characterized by ultrafast electron transfer measurements. We find that in order to achieve the optimum orientation and morphology, the molecule-substrate interaction needs to be strong enough to ensure a face-on stacking while it needs to be weak enough to avoid film roughening.