Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055214

RESUMO

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Assuntos
Proteínas de Ligação ao Cálcio , Doenças Mitocondriais , Proteínas de Ligação ao Cálcio/genética , Homeostase/genética , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Sistema Nervoso/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Brain ; 147(4): 1436-1456, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37951597

RESUMO

The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.


Assuntos
Deficiência Intelectual , Microcefalia , Transtornos dos Movimentos , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Feminino , Humanos , Masculino , Transportadores de Cassetes de Ligação de ATP , Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Tremor , Peixe-Zebra , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
3.
Am J Hum Genet ; 108(10): 2006-2016, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34626583

RESUMO

Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype.


Assuntos
Paralisia Cerebral/patologia , Epilepsia/patologia , Predisposição Genética para Doença , Variação Genética , Perda Auditiva/patologia , Deficiência Intelectual/patologia , Espasticidade Muscular/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , Adolescente , Adulto , Alelos , Animais , Paralisia Cerebral/etiologia , Paralisia Cerebral/metabolismo , Pré-Escolar , Epilepsia/etiologia , Epilepsia/metabolismo , Feminino , Perda Auditiva/etiologia , Perda Auditiva/metabolismo , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/etiologia , Deficiência Intelectual/metabolismo , Masculino , Espasticidade Muscular/etiologia , Espasticidade Muscular/metabolismo , Ratos , Adulto Jovem
4.
Genet Med ; 26(3): 101034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054405

RESUMO

PURPOSE: SLC4A10 encodes a plasma membrane-bound transporter, which mediates Na+-dependent HCO3- import, thus mediating net acid extrusion. Slc4a10 knockout mice show collapsed brain ventricles, an increased seizure threshold, mild behavioral abnormalities, impaired vision, and deafness. METHODS: Utilizing exome/genome sequencing in families with undiagnosed neurodevelopmental disorders and international data sharing, 11 patients from 6 independent families with biallelic variants in SLC4A10 were identified. Clinico-radiological and dysmorphology assessments were conducted. A minigene assay, localization studies, intracellular pH recordings, and protein modeling were performed to study the possible functional consequences of the variant alleles. RESULTS: The families harbor 8 segregating ultra-rare biallelic SLC4A10 variants (7 missense and 1 splicing). Phenotypically, patients present with global developmental delay/intellectual disability and central hypotonia, accompanied by variable speech delay, microcephaly, cerebellar ataxia, facial dysmorphism, and infrequently, epilepsy. Neuroimaging features range from some non-specific to distinct neuroradiological findings, including slit ventricles and a peculiar form of bilateral curvilinear nodular heterotopia. In silico analyses showed 6 of 7 missense variants affect evolutionarily conserved residues. Functional analyses supported the pathogenicity of 4 of 7 missense variants. CONCLUSION: We provide evidence that pathogenic biallelic SLC4A10 variants can lead to neurodevelopmental disorders characterized by variable abnormalities of the central nervous system, including altered brain ventricles, thus resembling several features observed in knockout mice.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Deficiência Intelectual/genética , Proteínas de Membrana Transportadoras , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Sódio/metabolismo , Bicarbonato de Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/genética
5.
Mov Disord ; 39(6): 983-995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581205

RESUMO

BACKGROUND: Based on a limited number of reported families, biallelic CA8 variants have currently been associated with a recessive neurological disorder named, cerebellar ataxia, mental retardation, and dysequilibrium syndrome 3 (CAMRQ-3). OBJECTIVES: We aim to comprehensively investigate CA8-related disorders (CA8-RD) by reviewing existing literature and exploring neurological, neuroradiological, and molecular observations in a cohort of newly identified patients. METHODS: We analyzed the phenotype of 27 affected individuals from 14 families with biallelic CA8 variants (including data from 15 newly identified patients from eight families), ages 4 to 35 years. Clinical, genetic, and radiological assessments were performed, and zebrafish models with ca8 knockout were used for functional analysis. RESULTS: Patients exhibited varying degrees of neurodevelopmental disorders (NDD), along with predominantly progressive cerebellar ataxia and pyramidal signs and variable bradykinesia, dystonia, and sensory impairment. Quadrupedal gait was present in only 10 of 27 patients. Progressive selective cerebellar atrophy, predominantly affecting the superior vermis, was a key diagnostic finding in all patients. Seven novel homozygous CA8 variants were identified. Zebrafish models demonstrated impaired early neurodevelopment and motor behavior on ca8 knockout. CONCLUSION: Our comprehensive analysis of phenotypic features indicates that CA8-RD exhibits a wide range of clinical manifestations, setting it apart from other subtypes within the category of CAMRQ. CA8-RD is characterized by cerebellar atrophy and should be recognized as part of the autosomal-recessive cerebellar ataxias associated with NDD. Notably, the presence of progressive superior vermis atrophy serves as a valuable diagnostic indicator. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Peixe-Zebra , Humanos , Ataxia Cerebelar/genética , Criança , Adolescente , Masculino , Feminino , Pré-Escolar , Animais , Adulto , Adulto Jovem , Anoctaminas/genética , Deficiência Intelectual/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
6.
Brain ; 146(12): 5031-5043, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517035

RESUMO

MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.


Assuntos
Catarata , Epilepsia Generalizada , Epilepsia , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Epilepsia/genética , Cerebelo/patologia , Transtornos do Neurodesenvolvimento/genética , Epilepsia Generalizada/patologia , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/genética , Atrofia/patologia , Catarata/genética , Catarata/patologia , Fenótipo , Complexo Mediador/genética
7.
Genet Med ; 25(11): 100922, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37403762

RESUMO

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Animais , Humanos , Ratos , Transtorno do Espectro Autista/genética , Epilepsia/genética , Mutação de Sentido Incorreto/genética , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Rabfilina-3A
8.
Genet Med ; 25(1): 90-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318270

RESUMO

PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants. METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.


Assuntos
Encefalopatias , Distonia , Transtornos dos Movimentos , Humanos , Animais , Ratos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Transtornos dos Movimentos/genética , Aminas , Encéfalo/metabolismo
9.
Brain ; 145(3): 909-924, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34605855

RESUMO

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.


Assuntos
Epilepsia Generalizada , Trocador de Sódio e Cálcio , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Glutamina/metabolismo , Histidina/metabolismo , Humanos , Metaboloma , Nitrogênio/metabolismo , Trocador de Sódio e Cálcio/genética
10.
Clin Genet ; 102(2): 98-109, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616059

RESUMO

Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders.


Assuntos
Deficiência Intelectual , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Fatores de Transcrição , Humanos , Deficiência Intelectual/diagnóstico , Transtornos dos Movimentos/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/complicações , Convulsões/genética , Fatores de Transcrição/genética
11.
Ann Neurol ; 89(6): 1240-1247, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704825

RESUMO

A rapidly expanding catalog of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty-four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases. ANN NEUROL 2021;89:1240-1247.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Pré-Escolar , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma , Adulto Jovem
12.
Brain ; 144(2): 584-600, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559681

RESUMO

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Assuntos
Proteínas da Matriz Extracelular/genética , Neuropatia Hereditária Motora e Sensorial/genética , Adulto , Idoso , Animais , Comportamento Animal/fisiologia , Criança , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra
13.
Curr Opin Neurol ; 34(4): 556-564, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34227574

RESUMO

PURPOSE OF REVIEW: This review aims to summarise the present cerebellar ataxia, neuropathy, vestibular ataxia syndrome (CANVAS) literature, providing both clinical and genetic insights that might facilitate the timely clinical and genetic diagnosis of this disease. RECENT FINDINGS: Recent advancements in the range of the clinical features of CANVAS have aided the development of a broader, more well-defined clinical diagnostic criteria. Additionally, the identification of a biallelic repeat expansion in RFC1 as the cause of CANVAS and a common cause of late-onset ataxia has opened the door to the potential discovery of a pathogenic mechanism, which in turn, may lead to therapeutic advancements and improved patient care. SUMMARY: The developments in the clinical and genetic understanding of CANVAS will aid the correct and timely diagnosis of CANVAS, which continues to prove challenging within the clinic. The insights detailed within this review will raise the awareness of the phenotypic spectrum and currently known genetics. We also speculate on the future directions of research into CANVAS.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Neuronite Vestibular , Ataxia , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Humanos , Proteína de Replicação C
14.
Genet Med ; 23(10): 1933-1943, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34172899

RESUMO

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Assuntos
Perda Auditiva , Lisina-tRNA Ligase/genética , Transtornos do Neurodesenvolvimento , Alelos , Animais , Modelos Animais de Doenças , Perda Auditiva/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Peixe-Zebra/genética
15.
Clin Genet ; 99(2): 313-317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33156547

RESUMO

Phosphatidylinositol Glycan Anchor Biosynthesis class H (PIGH) is an essential player in the glycosylphosphatidylinositol (GPI) synthesis, an anchor for numerous cell membrane-bound proteins. PIGH deficiency is a newly described and rare disorder associated with developmental delay, seizures and behavioral difficulties. Herein, we report three new unrelated families with two different bi-allelic PIGH variants, including one new variant p.(Arg163Trp) which seems associated with a more severe phenotype. The common clinical features in all affected individuals are developmental delay/intellectual disability and hypotonia. Variable clinical features include seizures, autism spectrum disorder, apraxia, severe language delay, dysarthria, feeding difficulties, facial dysmorphisms, microcephaly, strabismus, and musculoskeletal anomalies. The two siblings homozygous for the p.(Arg163Trp) variant have severe symptoms including profound psychomotor retardation, intractable seizures, multiple bone fractures, scoliosis, loss of independent ambulation, and delayed myelination on brain MRI. Serum iron levels were significantly elevated in one individual. All tested individuals with PIGH deficiency had normal alkaline phosphatase and CD16, a GPI-anchored protein (GPI-AP), was found to be decreased by 60% on granulocytes from one individual. This study expands the PIGH deficiency phenotype range toward the severe end of the spectrum with the identification of a novel pathogenic variant.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Transtornos do Neurodesenvolvimento/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Adulto Jovem
16.
Ann Neurol ; 88(5): 867-877, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32808683

RESUMO

OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.


Assuntos
Distonia/genética , Doenças por Armazenamento dos Lisossomos/genética , Proteínas de Transporte Vesicular/genética , Adulto , Efeitos Psicossociais da Doença , Distonia/patologia , Exoma/genética , Feminino , Fibroblastos/patologia , Predisposição Genética para Doença/genética , Variação Genética , Humanos , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem
17.
Epilepsia ; 62(2): e35-e41, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410539

RESUMO

The phosphatidylinositol glycan anchor biosynthesis class S protein (PIGS) gene has recently been implicated in a novel congenital disorder of glycosylation resulting in autosomal recessive inherited glycosylphosphatidylinositol-anchored protein (GPI-AP) deficiency. Previous studies described seven patients with biallelic variants in the PIGS gene, of whom two presented with fetal akinesia and five with global developmental delay and epileptic developmental encephalopathy. We present the molecular and clinical characteristics of six additional individuals from five families with unreported variants in PIGS. All individuals presented with hypotonia, severe global developmental delay, microcephaly, intractable early infantile epilepsy, and structural brain abnormalities. Additional findings include vision impairment, hearing loss, renal malformation, and hypotonic facial appearances with minor dysmorphic features but without a distinctive facial gestalt. Four individuals died due to neurologic complications. GPI anchoring studies performed on one individual revealed a significant decrease in GPI-APs. We confirm that biallelic variants in PIGS cause vitamin pyridoxine-responsive epilepsy due to inherited GPI deficiency and expand the genotype and phenotype of PIGS-related disorder. Further delineation of the molecular spectrum of PIGS-related disorders would improve management, help develop treatments, and encourage the expansion of diagnostic genetic testing to include this gene as a potential cause of neurodevelopmental disorders and epilepsy.


Assuntos
Aciltransferases/genética , Deficiências do Desenvolvimento/genética , Proteínas Ligadas por GPI/deficiência , Malformações do Sistema Nervoso/genética , Espasmos Infantis/genética , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Pré-Escolar , Deficiências do Desenvolvimento/fisiopatologia , Fácies , Feminino , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Humanos , Lactente , Rim/anormalidades , Masculino , Microcefalia/genética , Microcefalia/fisiopatologia , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/fisiopatologia , Fenótipo , Espasmos Infantis/fisiopatologia , Transtornos da Visão/genética , Transtornos da Visão/fisiopatologia
19.
Clin Park Relat Disord ; 10: 100232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292815

RESUMO

Background and Purpose: The International Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is widely used in the assessment of the severity of Parkinson's disease (PD). This study aimed to validate the Kazakh version of the MDS-UPDRS, explore its dimensionality, and compare it to the original English version. Methods: The validation was conducted in three phases: first, the English version of the MDS-UPDRS was translated into Kazakh and thereafter back-translated into English by two independent teams; second, the Kazakh version underwent a cognitive pretesting; third, the Kazakh version was tested in 360 native Kazakh-speaking PD patients. Both confirmatory and exploratory factor analyses were performed to validate the scale. We calculated the comparative fit index (CFI) for confirmatory factor analysis and used unweighted least squares for exploratory factor analysis. Results: The CFI was higher than 0.90 for all parts of the scale, thereby meeting the pre-set threshold for the official designation of a validated translation. Exploratory factor analysis also showed that the Kazakh MDS-UPDRS has the analogous factors structure in each part as the English version. Conclusions: The Kazakh MDS-UPDRS had a consistent overall structure as the English MDS-UPDRS, and it was designated as the official Kazakh MDS-UPDRS, which can reliably be used in the Kazakh-speaking populations. Presently, Kazakhstan stands as the sole country in both Central Asia and Transcaucasia with an MDS-approved translated version of the MDS-UPDRS. We expect that other Central Asian and Transcaucasian countries will embark on the MDS Translation Program for MDS-UPDRS in the near future.

20.
Neurol Genet ; 10(4): e200168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39035822

RESUMO

Objectives: To present a case series of novel CHD2 variants in patients presenting with genetic epileptic and developmental encephalopathy. Background: CHD2 gene encodes an ATP-dependent enzyme, chromodomain helicase DNA-binding protein 2, involved in chromatin remodeling. Pathogenic variants in CHD2 are linked to early-onset conditions such as developmental and epileptic encephalopathy, drug-resistant epilepsies, and neurodevelopmental disorders. Approximately 225 diagnosed patients from 28 countries exhibit various allelic variants in CHD2, including small intragenic deletions/insertions and missense, nonsense, and splice site variants. Results: We present the molecular and clinical characteristics of 17 unreported individuals from 17 families with novel pathogenic or likely pathogenic variants in CHD2. All individuals presented with severe global developmental delay, childhood-onset myoclonic epilepsy, and additional neuropsychiatric features, such as behavioral including autism, ADHD, and hyperactivity. Additional findings include abnormal reflexes, hypotonia and hypertonia, motor impairment, gastrointestinal problems, and kyphoscoliosis. Neuroimaging features included hippocampal signal alterations (4/10), with additional volume loss in 2 cases, inferior vermis hypoplasia (7/10), mild cerebellar atrophy (4/10), and cerebral atrophy (1/10). Discussion: Our study broadens the geographic scope of CHD2-related phenotypes, providing valuable insights into the prevalence and clinical characteristics of this genetic disorder in previously underrepresented populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA