Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Virol ; 98(7): e0049924, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953631

RESUMO

Tibroviruses are novel rhabdoviruses detected in humans, cattle, and arthropods. Four tibroviruses are known to infect humans: Bas-Congo virus (BASV), Ekpoma virus 1 (EKV-1), Ekpoma virus 2, and Mundri virus. However, since none of them has been isolated, their biological properties are largely unknown. We aimed to characterize the human tibrovirus glycoprotein (G), which likely plays a pivotal role in viral tropism and pathogenicity. Human tibrovirus Gs were found to share some primary structures and display 14 conserved cysteine residues, although their overall amino acid homology was low (29%-48%). Multiple potential glycosylation sites were found on the G molecules, and endoglycosidase H- and peptide-N-glycosidase F-sensitive glycosylation was confirmed. AlphaFold-predicted three-dimensional (3D) structures of human tibrovirus Gs were overall similar. Membrane fusion mediated by these tibrovirus Gs was induced by acidic pH. The low pH-induced conformational change that triggers fusion was reversible. Virus-like particles (VLPs) were produced by transient expression of Gs in cultured cells and used to produce mouse antisera. Using vesicular stomatitis Indiana virus pseudotyped with Gs, we found that the antisera to the respective tibrovirus VLPs showed limited cross-neutralizing activity. It was also found that human C-type lectins and T-cell immunoglobulin mucin 1 acted as attachment factors for G-mediated entry into cells. Interestingly, BASV-G showed the highest ability to utilize these molecules. The viruses infected a wide range of cell lines with preferential tropism for human-derived cells whereas the preference of EKV-1 was unique compared with the other human tibroviruses. These findings provide fundamental information to understand the biological properties of the human tibroviruses. IMPORTANCE: Human tibroviruses are poorly characterized emerging rhabdoviruses associated with either asymptomatic infection or severe disease with a case fatality rate as high as 60% in humans. However, the extent and burden of human infection as well as factors behind differences in infection outcomes are largely unknown. In this study, we characterized human tibrovirus glycoproteins, which play a key role in virus-host interactions, mainly focusing on their structural and antigenic differences and cellular tropism. Our results provide critical information for understanding the biological properties of these novel viruses and for developing appropriate preparedness interventions such as diagnostic tools, vaccines, and effective therapies.


Assuntos
Proteínas do Envelope Viral , Humanos , Animais , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Camundongos , Glicosilação , Internalização do Vírus , Tropismo Viral , Linhagem Celular , Mucina-1/metabolismo , Células HEK293 , Anticorpos Antivirais/imunologia , Sequência de Aminoácidos
2.
J Virol ; 97(1): e0145522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36633410

RESUMO

Rotavirus A (RVA) causes diarrheal disease in humans and various animals. Recent studies have identified bat and rodent RVAs with evidence of zoonotic transmission and genome reassortment. However, the virological properties of bat and rodent RVAs with currently identified genotypes still need to be better clarified. Here, we performed virus isolation-based screening for RVA in animal specimens and isolated RVAs (representative strains: 16-06 and MpR12) from Egyptian fruit bat and Natal multimammate mouse collected in Zambia. Whole-genome sequencing and phylogenetic analysis revealed that the genotypes of bat RVA 16-06 were identical to that of RVA BATp39 strain from the Kenyan fruit bat, which has not yet been characterized. Moreover, all segments of rodent RVA MpR12 were highly divergent and assigned to novel genotypes, but RVA MpR12 was phylogenetically closer to bat RVAs than to other rodent RVAs, indicating a unique evolutionary history. We further investigated the virological properties of the isolated RVAs. In brief, we found that 16-06 entered cells by binding to sialic acids on the cell surface, while MpR12 entered in a sialic acid-independent manner. Experimental inoculation of suckling mice with 16-06 and MpR12 revealed that these RVAs are causative agents of diarrhea. Moreover, 16-06 and MpR12 demonstrated an ability to infect and replicate in a 3D-reconstructed primary human intestinal epithelium with comparable efficiency to the human RVA. Taken together, our results detail the unique genetic and virological features of bat and rodent RVAs and demonstrate the need for further investigation of their zoonotic potential. IMPORTANCE Recent advances in nucleotide sequence detection methods have enabled the detection of RVA genomes from various animals. These studies have discovered multiple divergent RVAs and have resulted in proposals for the genetic classification of novel genotypes. However, most of these RVAs have been identified via dsRNA viral genomes and not from infectious viruses, and their virological properties, such as cell/host tropisms, transmissibility, and pathogenicity, are unclear and remain to be clarified. Here, we successfully isolated RVAs with novel genome constellations from three bats and one rodent in Zambia. In addition to whole-genome sequencing, the isolated RVAs were characterized by glycan-binding affinity, pathogenicity in mice, and infectivity to the human gut using a 3D culture of primary intestinal epithelium. Our study reveals the first virological properties of bat and rodent RVAs with high genetic diversity and unique evolutional history and provides basic knowledge to begin estimating the potential of zoonotic transmission.


Assuntos
Quirópteros , Murinae , Infecções por Rotavirus , Rotavirus , Animais , Quirópteros/virologia , Diarreia/veterinária , Diarreia/virologia , Genoma Viral , Genótipo , Quênia , Filogenia , Rotavirus/genética , Rotavirus/isolamento & purificação , Infecções por Rotavirus/veterinária , Murinae/virologia
3.
Virol J ; 21(1): 263, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449113

RESUMO

BACKGROUND: Rotavirus B (RVB) causes diarrhea in humans and pigs. Although various RVB strains were identified in humans and various animals globally, little is known about the epidemiology RVB infection in Africa. In this study, we attempted to examine the prevalence of RVB infection in pig populations in Zambia. METHODS: Metagenomic analyses were conducted on pig feces collected in Zambia to detect double stranded RNA viruses, including RVB. To clarify the prevalence of RVB infection in pig populations in Zambia, 147 fecal samples were screened for the RVB detection by RT-qPCR. Full genome sequence of a detected RVB was determined by Sanger sequencing and genetically analyzed. RESULTS: The metagenomic analyses revealed that RVB sequence reads and contigs of RVB were detected from one fecal sample collected from pigs in Zambia. RT-qPCR screening detected RVB genomes in 36.7% (54/147) of fecal samples. Among 54 positive samples, 13 were positive in non-diarrheal samples (n = 48, 27.1%) and 41 in diarrheal samples (n = 99, 41.4%). Genetic analyses demonstrated that all the segments of ZP18-18, except for VP4, had high nucleotide sequence identities (80.6-92.6%) with all other known RVB strains detected in pigs. In contrast, the VP4 sequence of ZP18-18 was highly divergent from other RVB strains (< 64.6% identities) and formed a distinct lineage in the phylogenetic tree. Notably, the VP8 subunit of the VP4 showed remarkably low amino acid identities (33.3%) to those of known RVB strains, indicating that the VP8 subunit of ZP18-18 was unique among RVB strains. According to the whole genome classification for RVB, ZP18-18 was assigned to a genotype constellation, G18-P[9]-I12-R4-C4-M4-A8-N10-T5-E4-H7 with the newly established VP4 genotype P[9]. CONCLUSIONS: This current study updates the geographical distribution and the genetic diversity of RVB. Given the lack of information regarding RVB in Africa, further RVB surveillance is required to assess the potential risk to humans and animals.


Assuntos
Proteínas do Capsídeo , Fezes , Genoma Viral , Genótipo , Filogenia , Infecções por Rotavirus , Rotavirus , Doenças dos Suínos , Animais , Suínos , Zâmbia/epidemiologia , Rotavirus/genética , Rotavirus/classificação , Rotavirus/isolamento & purificação , Infecções por Rotavirus/virologia , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/epidemiologia , Fezes/virologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Proteínas do Capsídeo/genética , Genoma Viral/genética , Diarreia/virologia , Diarreia/veterinária , Diarreia/epidemiologia , Análise de Sequência de DNA , RNA Viral/genética , Metagenômica , Prevalência
4.
Arch Virol ; 168(2): 61, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631547

RESUMO

Although rabies is endemic in Malawi, there have been no studies in which rabies virus was systematically investigated and characterized in multiple animal hosts in that country. In order to provide molecular epidemiological data on rabies virus in Malawi, 683 suspected rabies case reports from 2008 to 2021 were examined, and 46 (dog = 40, cow = 5, and cat = 1) viable rabies-positive brain samples archived at the Central Veterinary Laboratory (CVL), Lilongwe, Malawi, were analyzed genetically. The results showed an increase in the submission of brain samples from 2008 to 2010, with the highest number of submissions observed in 2020. Of the 683 case reports analyzed for the period under review, 38.1% (260/683) (CI: 34.44 - 41.84) were confirmed by direct fluorescent antibody test. Among the confirmed cases, 65.4% (170/260) (CI: 59.23 - 71.09) were canine rabies. Further, phylogenetic analysis revealed that sequences from different animal hosts clustered together within the Africa 1b lineage, suggesting that the strains circulating in livestock are similar to those in domestic dogs. This finding supports the hypothesis that canine rabies is spilling over to livestock and emphasizes the need for further studies to provide data for effective control of rabies in Malawi.


Assuntos
Doenças do Cão , Vírus da Raiva , Raiva , Feminino , Bovinos , Animais , Cães , Vírus da Raiva/genética , Raiva/epidemiologia , Raiva/veterinária , Filogenia , Malaui/epidemiologia , Epidemiologia Molecular , Doenças do Cão/epidemiologia , Gado
5.
Avian Pathol ; 51(2): 146-153, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34967244

RESUMO

The pathogenicity of the H5 subtype high pathogenicity avian influenza viruses (HPAIVs) in Ardeidae bird species has not been investigated yet, despite the increasing infections reported. Therefore, the present study aimed to examine the susceptibility of the Ardeidae species, which had already been reported to be susceptible to HPAIVs, to a clade 2.3.2.1 H5N1 HPAIV. Juvenile herons (four grey herons, one intermediate egret, two little egrets, and three black-crowned night herons) were intranasally inoculated with 106 50% egg infectious dose of the virus and observed for 10 days. Two of the four grey herons showed lethargy and conjunctivitis; among them, one died at 6 days post-inoculation (dpi). The viruses were transmitted to the other two cohoused naïve grey herons. Some little egrets and black-crowned night herons showing neurological disorders died at 4-5 dpi; these birds mainly shed the virus via the oral route. The viruses predominantly replicated in the brains of birds that died of infection. Seroconversion was observed in most surviving birds, except some black-crowned night herons. These results demonstrate that most Ardeidae species are susceptible to H5 HPAIVs, sometimes with lethal effects. Herons are mostly colonial and often share habitats with Anseriformes, natural hosts of influenza A viruses; therefore, the risks of cluster infection and contribution to viral dissemination should be continuously evaluated. RESEARCH HIGHLIGHTSClade 2.3.2.1 H5N1 HPAIV causes lethal infections in Ardeidae sp.Viruses are transmitted among grey herons.Some herons with HPAIV showed conjunctivitis or neurological symptoms.HPAIV systemically replicated in herons tissues.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Aves , Virulência
6.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269119

RESUMO

IgA antibodies on mucosal surfaces are known to play an important role in protection from influenza A virus (IAV) infection and are believed to be more potent than IgG for cross-protective immunity against IAVs of multiple hemagglutinin (HA) subtypes. However, in general, neutralizing antibodies specific to HA are principally HA subtype specific. Here, we focus on nonneutralizing but broadly cross-reactive HA-specific IgA antibodies. Recombinant IgG, monomeric IgA (mIgA), and polymeric secretory IgA (pSIgA) antibodies were generated based on the sequence of a mouse anti-HA monoclonal antibody (MAb) 5A5 that had no neutralizing activity but showed broad binding capacity to multiple HA subtypes. While confirming that there was no neutralizing activity of the recombinant MAbs against IAV strains A/Puerto Rico/8/1934 (H1N1), A/Adachi/2/1957 (H2N2), A/Hong Kong/483/1997 (H5N1), A/shearwater/South Australia/1/1972 (H6N5), A/duck/England/1/1956 (H11N6), and A/duck/Alberta/60/1976 (H12N5), we found that pSIgA, but not mIgA and IgG, significantly reduced budding and release of most of the viruses from infected cells. Electron microscopy demonstrated that pSIgA deposited newly produced virus particles on the surfaces of infected cells, most likely due to tethering of virus particles. Furthermore, we found that pSIgA showed significantly higher activity to reduce plaque sizes of the viruses than IgG and mIgA. These results suggest that nonneutralizing pSIgA reactive to multiple HA subtypes may play a role in intersubtype cross-protective immunity against IAVs.IMPORTANCE Mucosal immunity represented by pSIgA plays important roles in protection from IAV infection. Furthermore, IAV HA-specific pSIgA antibodies are thought to contribute to cross-protective immunity against multiple IAV subtypes. However, the mechanisms by which pSIgA exerts such versatile antiviral activity are not fully understood. In this study, we generated broadly cross-reactive recombinant IgG and pSIgA having the same antigen-recognition site and compared their antiviral activities in vitro These recombinant antibodies did not show "classical" neutralizing activity, whereas pSIgA, but not IgG, significantly inhibited the production of progeny virus particles from infected cells. Plaque formation was also significantly reduced by pSIgA, but not IgG. These effects were seen in infection with IAVs of several different HA subtypes. Based on our findings, we propose an antibody-mediated host defense mechanism by which mucosal immunity may contribute to broad cross-protection from IAVs of multiple HA subtypes, including viruses with pandemic potential.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoglobulina A/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Proteção Cruzada , Reações Cruzadas , Cães , Feminino , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/classificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Imunidade nas Mucosas , Imunoglobulina A/genética , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H2N2/genética , Vírus da Influenza A Subtipo H2N2/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Liberação de Vírus
7.
MMWR Morb Mortal Wkly Rep ; 70(8): 280-282, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33630820

RESUMO

The first laboratory-confirmed cases of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV-2, in Zambia were detected in March 2020 (1). Beginning in July, the number of confirmed cases began to increase rapidly, first peaking during July-August, and then declining in September and October (Figure). After 3 months of relatively low case counts, COVID-19 cases began rapidly rising throughout the country in mid-December. On December 18, 2020, South Africa published the genome of a SARS-CoV-2 variant strain with several mutations that affect the spike protein (2). The variant included a mutation (N501Y) associated with increased transmissibility.†,§ SARS-CoV-2 lineages with this mutation have rapidly expanded geographically.¶,** The variant strain (PANGO [Phylogenetic Assignment of Named Global Outbreak] lineage B.1.351††) was first detected in the Eastern Cape Province of South Africa from specimens collected in early August, spread within South Africa, and appears to have displaced the majority of other SARS-CoV-2 lineages circulating in that country (2). As of January 10, 2021, eight countries had reported cases with the B.1.351 variant. In Zambia, the average number of daily confirmed COVID-19 cases increased 16-fold, from 44 cases during December 1-10 to 700 during January 1-10, after detection of the B.1.351 variant in specimens collected during December 16-23. Zambia is a southern African country that shares substantial commerce and tourism linkages with South Africa, which might have contributed to the transmission of the B.1.351 variant between the two countries.


Assuntos
COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/genética , Adulto , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Zâmbia/epidemiologia
8.
Arch Virol ; 166(3): 915-919, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475831

RESUMO

Tick-borne pathogens are an emerging public health threat worldwide. However, information on tick-borne viruses is scanty in sub-Saharan Africa. Here, by RT-PCR, 363 ticks (Amblyomma, Hyalomma and Rhipicephalus) in the Namwala and Livingstone districts of Zambia were screened for tick-borne phleboviruses (TBPVs). TBPVs (L gene) were detected in 19 (5.2%) Rhipicephalus ticks in Namwala. All the detected TBPVs were Shibuyunji viruses. Phylogenetically, they were closely related to American dog tick phlebovirus. This study highlights the possible role of Rhipicephalus ticks as the main host of Shibuyunji virus and suggests that these viruses may be present outside the area where they were initially discovered.


Assuntos
Amblyomma/virologia , Febre por Flebótomos/epidemiologia , Phlebovirus/isolamento & purificação , Rhipicephalus/virologia , Doenças Transmitidas por Carrapatos/epidemiologia , Animais , Variação Genética/genética , Febre por Flebótomos/transmissão , Febre por Flebótomos/virologia , Phlebovirus/genética , Filogenia , Prevalência , Análise de Sequência de DNA , Doenças Transmitidas por Carrapatos/virologia , Zâmbia/epidemiologia
9.
Emerg Infect Dis ; 26(4): 811-814, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32187004

RESUMO

We detected West Nile virus (WNV) nucleic acid in crocodiles (Crocodylus niloticus) in Zambia. Phylogenetically, the virus belonged to lineage 1a, which is predominant in the Northern Hemisphere. These data provide evidence that WNV is circulating in crocodiles in Africa and increases the risk for animal and human transmission.


Assuntos
Jacarés e Crocodilos , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética , Zâmbia/epidemiologia
10.
J Gen Virol ; 101(10): 1027-1036, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32706330

RESUMO

Mammalian orthoreovirus (MRV) has been identified in humans, livestock and wild animals; this wide host range allows individual MRV to transmit into multiple species. Although several interspecies transmission and genetic reassortment events of MRVs among humans, livestock and wildlife have been reported, the genetic diversity and geographic distribution of MRVs in Africa are poorly understood. In this study, we report the first isolation and characterization of MRVs circulating in a pig population in Zambia. In our screening, MRV genomes were detected in 19.7 % (29/147) of faecal samples collected from pigs by reverse transcription PCR. Three infectious MRV strains (MRV-85, MRV-96 and MRV-117) were successfully isolated, and their complete genomes were sequenced. Recombination analyses based on the complete genome sequences of the isolated MRVs demonstrated that MRV-96 shared the S3 segment with a different MRV isolated from bats, and that the L1 and M3 segments of MRV-117 originated from bat and human MRVs, respectively. Our results suggest that the isolated MRVs emerged through genetic reassortment events with interspecies transmission. Given the lack of information regarding MRVs in Africa, further surveillance of MRVs circulating among humans, domestic animals and wildlife is required to assess potential risk for humans and animals.


Assuntos
Fezes/virologia , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/isolamento & purificação , Infecções por Reoviridae/veterinária , Doenças dos Suínos/virologia , Suínos/virologia , Animais , Animais Selvagens/classificação , Animais Selvagens/virologia , Quirópteros/virologia , Genoma Viral , Especificidade de Hospedeiro , Filogenia , Prevalência , Vírus Reordenados/genética , Recombinação Genética , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Doenças dos Suínos/epidemiologia , Proteínas Virais/genética , Sequenciamento Completo do Genoma , Zâmbia/epidemiologia
11.
Clin Infect Dis ; 69(1): 107-112, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30423022

RESUMO

BACKGROUND: Relapsing fever is an infectious disease previously neglected in Africa, which imposes a large public health burden in the country. We aimed to investigate and report on a case of relapsing fever borreliosis in Zambia. METHODS: A previously unknown Borrelia species was isolated from the blood of a febrile patient. Investigations of the presumptive vector ticks and natural hosts for the Borrelia species were conducted by culture isolation and/or DNA detection by Borrelia-specific polymerase chain reaction. Using culture isolates from the patient and bat specimens, genetic characterization was performed by multilocus sequence analysis based on the draft genome sequences. RESULTS: The febrile patient was diagnosed with relapsing fever. The isolated Borrelia species was frequently detected in Ornithodoros faini (n = 20/50 [40%]) and bats (n = 64/237 [27%]). Multilocus sequence analysis based on a draft genome sequence revealed that the Borrelia species isolates from the patient and presumptive reservoir host (bats) formed a monophyletic lineage that clustered with relapsing fever borreliae found in the United States. CONCLUSIONS: A febrile illness caused by a Borrelia species that was treatable with erythromycin was identified in Zambia. This is the first study to report on relapsing fever Borrelia in Zambia and suggesting the likely natural reservoir hosts of the isolated Borrelia species. Interestingly, the isolated Borrelia species was more closely related to New World relapsing fever borreliae, despite being detected in the Afrotropic ecozone.


Assuntos
Infecções por Borrelia/diagnóstico , Borrelia/classificação , Borrelia/isolamento & purificação , Febre Recorrente/diagnóstico , Adulto , Animais , Antibacterianos/uso terapêutico , Técnicas de Tipagem Bacteriana , Mordeduras e Picadas , Infecções por Borrelia/tratamento farmacológico , Infecções por Borrelia/microbiologia , Quirópteros/microbiologia , Reservatórios de Doenças/microbiologia , Genoma Bacteriano , Humanos , Masculino , Tipagem de Sequências Multilocus , Filogenia , Febre Recorrente/tratamento farmacológico , Febre Recorrente/microbiologia , Carrapatos/microbiologia , Zâmbia , Zoonoses/diagnóstico , Zoonoses/microbiologia
12.
Emerg Infect Dis ; 25(8): 1577-1580, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146800

RESUMO

We detected Marburg virus genome in Egyptian fruit bats (Rousettus aegyptiacus) captured in Zambia in September 2018. The virus was closely related phylogenetically to the viruses that previously caused Marburg outbreaks in the Democratic Republic of the Congo. This finding demonstrates that Zambia is at risk for Marburg virus disease.


Assuntos
Quirópteros/virologia , Doença do Vírus de Marburg/virologia , Marburgvirus , Animais , Genes Virais , Humanos , Doença do Vírus de Marburg/diagnóstico , Doença do Vírus de Marburg/epidemiologia , Marburgvirus/classificação , Marburgvirus/genética , Marburgvirus/isolamento & purificação , Filogenia , Prevalência , Vigilância em Saúde Pública , RNA Viral , Zâmbia/epidemiologia
13.
Arch Virol ; 164(10): 2531-2536, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31300890

RESUMO

Whilst bovine leukemia virus (BLV) causes considerable economic losses to the dairy industry worldwide, information on its molecular epidemiology and economic impact in beef cattle is limited. Here, blood from 880 animals from Zambia's major cattle-rearing provinces was screened for BLV by nested PCR. Positive pools were sequenced and phylogenetically analyzed. The estimated pooled prevalence was 2.1%. All strains belonged to genotype 1 and formed a distinct phylogenetic cluster. The study suggests circulation of genotype 1 BLV in beef cattle in these regions. This is the first report on molecular detection and characterization of BLV from beef cattle in Africa.


Assuntos
Leucose Enzoótica Bovina/epidemiologia , Leucose Enzoótica Bovina/virologia , Genótipo , Vírus da Leucemia Bovina/genética , Vírus da Leucemia Bovina/isolamento & purificação , Animais , Bovinos , Vírus da Leucemia Bovina/classificação , Epidemiologia Molecular , Filogenia , Reação em Cadeia da Polimerase , Prevalência , Análise de Sequência de DNA , Zâmbia/epidemiologia
14.
Virus Genes ; 55(5): 713-719, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31267444

RESUMO

Rabies is endemic in Zambia and Zimbabwe. The previously investigated strains of rabies virus in central Zambia belong to the Africa 1b lineage, with similar circulating virus strains found in the various tested hosts and regions. However, prior work assessed only limited regions and host species. Thus, this study aimed to more comprehensively determine the genetic diversity of rabies virus across regions of Zambia and Zimbabwe. RNA (n = 76) was extracted from positive direct fluorescent antibody test brain tissues from dog, cow, goat, cat, pig, human, and jackal collected from Zambia and Zimbabwe. The amplicons of the nucleoprotein and glycoprotein genes were obtained from all examined samples by nested RT-PCR and subsequently sequenced. A phylogenetic analysis of the N gene confirmed that all the endemic strains of rabies virus in Zambia and Zimbabwe belong to the Africa 1b lineage. The obtained viral gene sequences were phylogenetically divided into two clusters. Cluster II comprised only Zambian strains. In contrast, cluster I comprised both Zambia and Zimbabwe strains, with strains from Zimbabwe forming a distinct lineage from Zambian strains, implying viral genetic divergence due to geographical barriers. However, no evidence of clustering based on host or region was observed, implying the circulation of similar virus strains occurs in different hosts and regions of Zambia and Zimbabwe. The clustering of rabies virus strains from jackals with those from domestic animals provides evidence of similar virus strains circulating in both wildlife and domestic animals, and that the jackal might be one of the potential reservoirs of rabies virus infection. In this study, no strains circulating in Zimbabwe were detected in Zambia.


Assuntos
Variação Genética , Filogeografia , Vírus da Raiva/classificação , Vírus da Raiva/genética , Raiva/virologia , Animais , Humanos , Reação em Cadeia da Polimerase , Raiva/veterinária , Vírus da Raiva/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Proteínas Estruturais Virais/genética , Zâmbia , Zimbábue
15.
Trop Anim Health Prod ; 51(8): 2619-2627, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31250252

RESUMO

Rift Valley fever (RVF) is a zoonotic mosquito-borne disease caused by RVF virus (RVFV) that causes abortions and high mortalities in livestock and is also associated with acute and fatal disease in humans. In the Democratic Republic of Congo (DRC), information on the epidemiology of RVF is limited, particularly among cattle reared by smallholder farmers. This cross-sectional study was conducted to investigate the seroprevalence of RVF in cattle raised by smallholder farmers in Kwilu Province of DRC, which has not yet reported an RVF epidemic. A total of 677 cattle sera were collected from four territories and tested for anti-RVFV antibodies using immunofluorescent assay and enzyme-linked immunosorbent assay. The overall seroprevalence of anti-RVFV IgG was 6.5% (44/677) (95% CI 4.81-8.7). There was a statistically significant difference in the seroprevalence among the territories (χ2 = 28.79, p < 0.001). Territory seroprevalences were as follows: Idiofa 14.08% (95% CI 9.78-19.76), Bulungu 4.14% (95% CI 1.83-8.68), Gungu 3.21% (95% CI 1.41-6.78), and Masi-Manimba 1.19% (95% CI 0.06-7.37). Seroprevalence differed significantly among age categories (p = 0.0017) and ecosystem (p < 0.001). The seroprevalence of animals aged between 1 and 2 years was 20.0% (95% CI 8.4-39.13) and was higher than group aged <1 year, between 2 and 3 years, and > 3 years. Forest area (18.92% (95% CI 12.35-27.7)) had higher seropositivity than savannah area (4.06% (95% CI 2.65-6.12)). Sex difference was not significant (χ2 = 0.14, p = 0.704). These findings indicate that cattle in Kwilu Province had been exposed to RVFV, which represents a significant risk for both livestock and human health.


Assuntos
Doenças dos Bovinos/epidemiologia , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift , Criação de Animais Domésticos , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/virologia , Estudos Transversais , República Democrática do Congo/epidemiologia , Feminino , Masculino , Prevalência , Febre do Vale de Rift/virologia , Estudos Soroepidemiológicos , Fatores Sexuais
16.
J Infect Dis ; 218(suppl_5): S662-S665, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29889266

RESUMO

Marburg virus (MARV), family Filoviridae, causes Marburg hemorrhagic fever (MHF) in humans and nonhuman primates with case fatality rates of up to 90%. There is no approved therapeutic for MHF, yet several experimental approaches have been evaluated in preclinical studies including small interfering RNA and monoclonal antibody (mAb) treatment. In this study we attempted to improve the therapeutic efficacy of the neutralizing mAb M4 by combining treatment with 1 or 2 of blocking but nonneutralizing mAbs 126-15 and 127-8. We found that single-dose treatment early after infection with the neutralizing mAb M4 or any of the mAb combinations resulted in similar protection in the MARV hamster model. However, a single-dose treatment with the cocktail of all 3 mAbs provided the best protection in delayed treatment, with 67%-100% of the animals surviving a lethal challenge depending on the time of treatment. This study identified a new promising mAb cocktail as a therapeutic option for MHF.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doença do Vírus de Marburg/tratamento farmacológico , Animais , Anticorpos Neutralizantes/uso terapêutico , Cricetinae , Modelos Animais de Doenças , Masculino , Doença do Vírus de Marburg/mortalidade , Mesocricetus , Camundongos
17.
J Infect Dis ; 218(suppl_5): S312-S317, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29889270

RESUMO

Bats are suspected to play important roles in the ecology of filoviruses, including ebolaviruses and marburgviruses. A cave-dwelling fruit bat, Rousettus aegyptiacus, has been shown to be a reservoir of marburgviruses. Using an enzyme-linked immunosorbent assay with the viral glycoprotein antigen, we detected immunoglobulin G antibodies specific to multiple filoviruses in 158 of 290 serum samples of R aegyptiacus bats captured in Zambia during the years 2014-2017. In particular, 43.8% of the bats were seropositive to marburgvirus, supporting the notion that this bat species continuously maintains marburgviruses as a reservoir. Of note, distinct peaks of seropositive rates were repeatedly observed at the beginning of rainy seasons, suggesting seasonality of the presence of newly infected individuals in this bat population. These data highlight the need for continued monitoring of filovirus infection in this bat species even in countries where filovirus diseases have not been reported.


Assuntos
Quirópteros/sangue , Quirópteros/imunologia , Infecções por Filoviridae/sangue , Infecções por Filoviridae/imunologia , Filoviridae/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Quirópteros/virologia , Reservatórios de Doenças/virologia , Feminino , Infecções por Filoviridae/virologia , Glicoproteínas/sangue , Glicoproteínas/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Estudos Soroepidemiológicos , Zâmbia
18.
Arch Virol ; 162(4): 1051-1056, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28025710

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leucosis (EBL) and is responsible for substantial economic losses in cattle globally. However, information in Africa on the disease is limited. Here, based on clinical, hematological, pathological and molecular analyses, two clinical cases of EBL were confirmed in a dairy cattle herd in Zambia. In contrast, proviral DNA was detected by PCR in five apparently healthy cows from the same herd, suggesting subclinical BLV infection. Phylogenetic analysis of the env gene showed that the identified BLV clustered with Eurasian genotype 4 strains. This is the first report of confirmed EBL in Zambia.


Assuntos
Leucose Enzoótica Bovina/virologia , Vírus da Leucemia Bovina/isolamento & purificação , Sequência de Aminoácidos , Animais , Bovinos , Feminino , Genótipo , Vírus da Leucemia Bovina/química , Vírus da Leucemia Bovina/classificação , Vírus da Leucemia Bovina/genética , Masculino , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Zâmbia
19.
Arch Virol ; 162(8): 2363-2367, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28378295

RESUMO

Orf or contagious ecthyma is a neglected and economically important zoonotic disease caused by a dermatotropic parapoxvirus that commonly affects domestic small ruminants. Although orf is globally distributed, there is a paucity of information on the disease in many African countries. Here, a suspected severe outbreak of orf in goats at a farm in Lusaka was investigated. Orf virus (ORFV) infection was confirmed by PCR amplification of viral DNA (RNA polymerase, B2L and virus interferon-resistance genes) in clinical samples. Some detected genes were sequenced and phylogenetically analyzed. This is the first report on molecular characterization of ORFV in goats in Zambia.


Assuntos
Ectima Contagioso/virologia , Doenças das Cabras/virologia , Vírus do Orf/genética , Vírus do Orf/patogenicidade , Animais , DNA Viral/genética , Ectima Contagioso/epidemiologia , Doenças das Cabras/epidemiologia , Cabras , Sequenciamento de Nucleotídeos em Larga Escala , Gado/virologia , Vírus do Orf/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Zoonoses/epidemiologia , Zoonoses/virologia
20.
J Infect Dis ; 214(suppl 3): S185-S191, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27462094

RESUMO

The latest outbreak of Ebola virus disease (EVD) in West Africa has highlighted the urgent need for the development of rapid and reliable diagnostic assays. We used monoclonal antibodies specific to the ebolavirus nucleoprotein to develop an immunochromatography (IC) assay (QuickNavi-Ebola) for rapid diagnosis of EVD. The IC assay was first evaluated with tissue culture supernatants of infected Vero E6 cells and found to be capable of detecting 103-104 focus-forming units/mL of ebolaviruses. Using serum samples from experimentally infected nonhuman primates, we confirmed that the assay could detect the viral antigen shortly after disease onset. It was also noted that multiple species of ebolaviruses could be detected by the IC assay. Owing to the simplicity of the assay procedure and absence of requirements for special equipment and training, QuickNavi-Ebola is expected to be a useful tool for rapid diagnosis of EVD.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos Virais/imunologia , Cromatografia de Afinidade/métodos , Surtos de Doenças , Ebolavirus/imunologia , Doença pelo Vírus Ebola/diagnóstico , África Ocidental/epidemiologia , Animais , Anticorpos Antivirais/sangue , Ebolavirus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Humanos , Nucleoproteínas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA