Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Virol ; 97(10): e0075723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37712703

RESUMO

IMPORTANCE: Pathogens often hijack extracellular vesicle (EV) biogenesis pathways for assembly, egress, and cell-to-cell spread. Herpes simplex virus 1 (HSV-1) infection stimulated EV biogenesis through a CD63 tetraspanin biogenesis pathway and these EVs activated antiviral responses in recipient cells restricting the infection. HSV-1 inhibits autophagy to evade the host, and increased CD63 exocytosis could be a coping mechanism, as CD63 is involved in both cargo delivery to lysosomes during autophagy and exocytosis. We analyzed exocytosis after infection with two HSV-1 mutants, a ΔICP34.5 and a ΔICP0, that could not inhibit autophagy. Unlike HSV-1(F), neither of these viruses stimulated increased EV biogenesis through the CD63 pathway. ΔICP34.5 stimulated production of microvesicles and apoptotic bodies that were CD63-negative, while ΔICP0 displayed an overall reduced production of EVs. These EVs activated innate immunity gene expression in recipient cells. Given the potential use of these mutants for therapeutic purposes, the immunomodulatory properties of EVs associated with them may be beneficial.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Autofagia , Exocitose , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Tetraspaninas/metabolismo
2.
Retrovirology ; 19(1): 25, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403071

RESUMO

BACKGROUND: Viroporins are virally encoded ion channels involved in virus assembly and release. Human immunodeficiency virus type 1 (HIV-1) and influenza A virus encode for viroporins. The human coronavirus SARS-CoV-2 encodes for at least two viroporins, a small 75 amino acid transmembrane protein known as the envelope (E) protein and a larger 275 amino acid protein known as Orf3a. Here, we compared the replication of HIV-1 in the presence of four different ß-coronavirus E proteins. RESULTS: We observed that the SARS-CoV-2 and SARS-CoV E proteins reduced the release of infectious HIV-1 yields by approximately 100-fold while MERS-CoV or HCoV-OC43 E proteins restricted HIV-1 infectivity to a lesser extent. Mechanistically, neither reverse transcription nor mRNA synthesis was involved in the restriction. We also show that all four E proteins caused phosphorylation of eIF2-α at similar levels and that lipidation of LC3-I could not account for the differences in restriction. However, the level of caspase 3 activity in transfected cells correlated with HIV-1 restriction in cells. Finally, we show that unlike the Vpu protein of HIV-1, the four E proteins did not significantly down-regulate bone marrow stromal cell antigen 2 (BST-2). CONCLUSIONS: The results of this study indicate that while viroporins from homologous viruses can enhance virus release, we show that a viroporin from a heterologous virus can suppress HIV-1 protein synthesis and release of infectious virus.


Assuntos
COVID-19 , HIV-1 , Humanos , Proteínas Viroporinas , HIV-1/genética , SARS-CoV-2 , Replicação Viral , Aminoácidos
3.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361424

RESUMO

Extracellular vesicles (EVs) are released by all types of cells as a means of intercellular communication. Their significance lies in the fact that they can alter recipient cell functions, despite their limited capacity for cargo. We have previously demonstrated that herpes simplex virus 1 (HSV-1) infection influences the cargo and functions of EVs released by infected cells and that these EVs negatively impact a subsequent HSV-1 infection. In the present study, we have implemented cutting-edge technologies to further characterize EVs released during HSV-1 infection. We identified distinct EV populations that were separable through a gradient approach. One population was positive for the tetraspanin CD63 and was distinct from EVs carrying components of the endosomal sorting complexes required for transport (ESCRT). Nanoparticle tracking analysis (NTA) combined with protein analysis indicated that the production of CD63+ EVs was selectively induced upon HSV-1 infection. The ExoView platform supported these data and suggested that the amount of CD63 per vesicle is larger upon infection. This platform also identified EV populations positive for other tetraspanins, including CD81 and CD9, whose abundance decreased upon HSV-1 infection. The stimulator of interferon genes (STING) was found in CD63+ EVs released during HSV-1 infection, while viral components were found in ESCRT+ EVs. Functional characterization of these EVs demonstrated that they have opposite effects on the infection, but the dominant effect was negative. Overall, we have identified the dominant population of EVs, and other EV populations produced during HSV-1 infection, and we have provided information about potential roles.IMPORTANCE Extracellular vesicles mediate cell-to-cell communication and convey messages important for cell homeostasis. Pathways of EV biogenesis are often hijacked by pathogens to facilitate their dissemination and to establish a favorable microenvironment for the infection. We have previously shown that HSV-1 infection alters the cargo and functions of the released EVs, which negatively impact the infection. We have built upon our previous findings by developing procedures to separate EV populations from HSV-1-infected cells. We identified the major population of EVs released during infection, which carries the DNA sensor STING and has an antiviral effect. We also identified an EV population that carries selected viral proteins and has a proviral role. This is the first study to characterize EV populations during infection. These data indicate that the complex interactions between the virus and the host are extended to the extracellular environment and could impact HSV-1 dissemination and persistence in the host.


Assuntos
Vesículas Extracelulares/fisiologia , Herpesvirus Humano 1/fisiologia , Antivirais/metabolismo , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exocitose , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/metabolismo , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo , Proteínas Virais/metabolismo
4.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33536165

RESUMO

Previously, we showed that the presence of the herpes simplex virus type 1 (HSV-1) gD glycoprotein but not gB potently restricted HIV-1 particle infectivity. This restriction was characterized by incorporation of HSV-1 gD and the exclusion of the HIV-1 gp120/gp41 from budding virus particles. To determine the structural domains involved in gD restriction of HIV-1, a series of deletion mutants and chimeric proteins between gD and the non-restrictive gB were generated. Our results show that deletion of the cytoplasmic tail domain (CTD) of gD or that replacement of the transmembrane domain (TMD) with the TMD from gB slightly reduced restriction activity. However, replacement of the gD CTD with that of gB resulted in lower cell surface expression, significantly less incorporation into HIV-1 particles, and inefficient restriction of the release of infectious HIV-1. Analysis of gB/gD chimeric proteins revealed that removal of the gB CTD or replacement with gD CTD resulted in enhanced surface expression and an increase in restriction activity. Finally, we show that expression of gD without other HSV-1 proteins resulted in gD fractionation into detergent resistant membranes (DRM) and that gD co-localized with the raft marker GM1, which may partially explain its incorporation into budding virus particles. Taken together, our results suggest that expression of gD at the cell surface is likely a major factor but that other intrinsic properties are also involved in the gD-mediated restriction of HIV-1 particle infectivity.IMPORTANCE Previously, we showed that unlike the HSV-1, the presence of the gD glycoprotein in virus producer cells but not gB potently restricted HIV-1 particle infectivity. To better understand the relationship between cell surface expression, virus incorporation and restriction of HIV-1, we analyzed a series of deletion mutants and chimeric proteins in which domains of gD and gB were swapped. Our results indicate that: a) gD/gB chimeras having the cytoplasmic domain (CTD) of gB significantly reduced cell surface expression, release from cells, incorporation into virus, and reduced HIV-1 restriction; b) removal of the gB CTD or replacement with the gD CTD resulted in better surface expression, incorporation into HIV-1, and enhanced restriction; and c) the transmembrane domain of gB can influence transport and ultimately effect incorporation of gB into HIV-1. Overall, these data support a role for gD surface expression as crucial to restriction of infectious HIV-1 release.

5.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375597

RESUMO

Herpes simplex virus 1 (HSV-1) infects mucosal epithelial cells and establishes lifelong infections in sensory neurons. Following reactivation, the virus is transferred anterograde to the initial site of infection or to sites innervated by infected neurons, causing vesicular lesions. Upon immunosuppression, frequent HSV-1 reactivation can cause severe diseases, such as blindness and encephalitis. Autophagy is a process whereby cell components are recycled, but it also serves as a defense mechanism against pathogens. HSV-1 is known to combat autophagy through the functions of the γ134.5 protein, which prevents formation of the autophagophore by binding to Beclin 1, a key factor involved in the elongation of the isolation membrane, and by redirecting the protein phosphatase 1α (PP1α) to dephosphorylate the translation initiation factor 2α (eIF2α) to prevent host translational shutoff. Other viral proteins that counteract innate immunity negatively impact autophagy. Here, we present a novel strategy of HSV-1 to evade the host through the downregulation of the autophagy adaptor protein sequestosome (p62/SQSTM1) and of the mitophagy adaptor optineurin (OPTN). This down-modulation occurs during the early steps of the infection. We also found that infected cell protein 0 (ICP0) of the virus mediates the down-modulation of the two autophagy adaptors in a mechanism independent of its E3 ubiquitin ligase activity. Cells depleted of either p62 or OPTN were able to mount greater antiviral responses, whereas cells expressing exogenous p62 displayed decreased virus yields. We conclude that downregulation of p62/SQSTM1 and OPTN is a viral strategy to counteract the host.IMPORTANCE Autophagy is a homeostatic mechanism of cells to recycle components, as well as a defense mechanism to get rid of pathogens. Strategies that HSV-1 has developed to counteract autophagy have been described and involve inhibition of autophagosome formation or indirect mechanisms. Here, we present a novel mechanism that involves downregulation of two major autophagy adaptor proteins, sequestosome 1 (p62/SQSTM1) and optineurin (OPTN). These findings generate the question of why the virus targets two major autophagy adaptors if it has mechanisms to block autophagosome formation. P62/SQSTM1 and OPTN proteins have pleiotropic functions, including regulation of innate immunity, inflammation, protein sorting, and chromatin remodeling. The decrease in virus yields in the presence of exogenous p62/SQSTM1 suggests that these adaptors have an antiviral function. Thus, HSV-1 may have developed multiple strategies to incapacitate autophagy to ensure replication. Alternatively, the virus may target another antiviral function of these proteins.


Assuntos
Autofagia , Proteínas de Ciclo Celular/antagonistas & inibidores , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/metabolismo , Proteína Sequestossoma-1/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação para Baixo , Herpes Simples/genética , Herpes Simples/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Imunidade Inata , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitofagia , Fagossomos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30355691

RESUMO

Herpes simplex virus 1 (HSV-1) infections afflict more than 80% of the population worldwide. The virus primarily infects mucoepithelial cells and establishes latent reservoirs in neurons in sensory ganglia. Frequent reactivation has been linked to severe diseases, especially in immunocompromised individuals. Earlier, we reported that viral and host factors are packaged in extracellular vesicles (EVs) and delivered to uninfected cells, where they activate antiviral responses and restrict virus infection. Here, we interrogated the effect of HSV-1 infection on EV biogenesis. We found that HSV-1 infection causes a decrease in the amount of intracellular CD63 protein with a concomitant increase in extracellular CD63. This observation correlates with our previous finding that infected cells release more CD63-positive EVs than uninfected cells. The stimulation of CD63 exocytosis requires virus replication. CD63 is a member of the tetraspanin family of proteins that traffics between the plasma membrane and endosomal compartments and has a role in sorting cargo into the EVs. Previously, we reported that in cells depleted of CD63, HSV-1 virus yields increased, and here we provide data showing that in cells overexpressing CD63, HSV-1 virus yields decreased. Taken together, our data indicate that CD63 negatively impacts HSV-1 infection and that the CD63-positive EVs could control the dissemination of the virus in the host. Perhaps EV release by HSV-1-infected cells is a mechanism that controls virus dissemination.IMPORTANCE Intercellular communication, especially in neurons, largely relies on EVs, and modulation of EVs is known to impact physiological processes. Here, we present evidence that HSV-1 infection causes major alterations in the biogenesis of EVs, including an increase in their number and an increase in the CD63-positive population of EVs. These alterations result in an enrichment of the milieu of infection with EVs carrying signatures from infected cells. In addition to changes in the origin and type, EVs released by infected cells have differences in cargo, as they carry viral and host factors determined by the virus. The tetraspanin CD63 negatively impacts the infection, as demonstrated by CD63-knockdown and overexpression assays. A proposed mechanism involves the activation of antiviral responses in cells receiving CD63-positive EVs released by infected cells. Overall, HSV-1 causes major alterations in EVs that could contribute to HSV-1 persistence and pathogenesis.


Assuntos
Vesículas Extracelulares/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/patogenicidade , Tetraspaninas/metabolismo , Exocitose , Vesículas Extracelulares/virologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células Hep G2 , Herpes Simples/genética , Herpes Simples/virologia , Humanos , Tetraspaninas/genética , Replicação Viral
7.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996104

RESUMO

Herpes simplex virus 1 (HSV-1) has infected more than 80% of the population. Reactivation of the virus causes diseases ranging in severity from benign cold sores to fatal encephalitis. Current treatments involve viral DNA replication inhibitors, but the emergence of drug-resistant mutants is observed frequently, highlighting the need for novel antiviral therapies. Infected cell protein 0 (ICP0) of HSV-1 is encoded by an immediate early gene and plays a fundamental role during infection, because it enables viral gene expression and blocks antiviral responses. One mechanism by which ICP0 functions is through an E3 ubiquitin ligase activity that induces the degradation of targeted proteins. A ΔICP0 virus or mutants with deficiencies in E3 ligase activity cannot counteract beta interferon (IFN-ß)-induced restriction of viral infection, are highly immunogenic, are avirulent, and fail to spread. Thus, small molecules interfering with essential and conserved ICP0 functions are expected to compromise HSV-1 infection. We have developed a high-throughput screening assay, based on the autoubiquitination properties of ICP0, to identify small-molecule inhibitors of ICP0 E3 ubiquitin ligase activity. Through a pilot screening procedure, we identified nine compounds that displayed dose-dependent inhibitory effects on ICP0 but not on Mdm2, a control E3 ubiquitin ligase. Following validation, one compound displayed ICP0-dependent inhibition of HSV-1 infection. This compound appeared to bind ICP0 in a cellular thermal shift assay, it blocked ICP0 self-elimination, and it blocked wild-type but not ICP0-null virus gene expression. This scaffold displays specificity and could be used to develop optimized ICP0 E3 ligase inhibitors.IMPORTANCE Since acyclovir and its derivatives were launched for herpesviruses control almost four decades ago, the search for novel antivirals has waned. However, as human life expectancy has increased, so has the number of immunocompromised individuals who receive prolonged treatment for HSV recurrences. This has led to an increase in unresponsive patients due to acquired viral drug resistance. Thus, novel treatments need to be explored. Here we explored the HSV-1 ICP0 E3 ligase as a potential antiviral target because (i) ICP0 is expressed before virus replication, (ii) it is essential for infection in vivo, (iii) it is required for efficient reactivation of the virus from latency, (iv) inhibition of its E3 ligase activity would sustain host immune responses, and (v) it is shared by other herpesviruses. We report a compound that inhibits HSV-1 infection in an ICP0-dependent manner by inhibiting ICP0 E3 ligase activity.


Assuntos
Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/metabolismo , Ensaios de Triagem em Larga Escala , Proteínas Imediatamente Precoces/efeitos dos fármacos , Proteínas Imediatamente Precoces/metabolismo , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Linhagem Celular , Replicação do DNA , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais , Replicação Viral/efeitos dos fármacos
8.
Retrovirology ; 16(1): 9, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940160

RESUMO

BACKGROUND: We previously showed that the gM of HSV-1 could restrict the release of infectious HIV-1 from cells. In this study, we analyzed if the four HSV-1 glycoproteins (gD, gB, and gH/gL), which are the minimum glycoproteins required for HSV-1 entry, restricted the release of infectious HIV-1. RESULTS: Of these four glycoproteins, gD and gH/gL restricted the production of infectious HIV-1 from cells transfected with an infectious molecular clone of HIV-1 (strain NL4-3) while gB had no significant effect. Pulse-chase analyses indicated that gD did not affect the biosynthesis and processing of gp160 into gp120/gp41, the transport of the gp120/gp41 to the cell surface, or the release of HIV-1 particles from the cell surface. Our analyses revealed that gD was incorporated into HIV-1 virus particles while gp120/gp41 was excluded from released virus particles. Truncated mutants of gD revealed that the cytoplasmic domain was dispensable but that a membrane bound gD was required for the restriction of release of infectious HIV-1. Finally, cell lines expressing gD also potently restricted the release of infectious virus. CONCLUSIONS: Due to its ability to exclude HIV-1 gp120/gp41 from maturing virus, gD may provide a useful tool in deciphering mechanisms of Env incorporation into maturing virus particles.


Assuntos
HIV-1/fisiologia , Herpesvirus Humano 1/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Linhagem Celular , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp160 do Envelope de HIV/genética , Proteína gp160 do Envelope de HIV/metabolismo , Herpesvirus Humano 1/genética , Humanos , Glicoproteínas de Membrana/genética , Proteínas do Envelope Viral/genética
9.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29976662

RESUMO

Herpes simplex virus 1 (HSV-1)-infected cells release extracellular vesicles (EVs) that deliver to uninfected cells viral factors and host components, such as the stimulator of interferon genes (STING), which activates type I interferon upon foreign DNA sensing. The functions of EVs released by HSV-1-infected cells have remained unknown. Here, we describe a procedure to separate the EVs from HSV-1 virions that is based on an iodixanol/sucrose gradient. STING, along with the EV markers CD63 and CD9, was found in light-density fractions, while HSV components accumulated in heavy-density fractions. HSV-1 infection stimulated the release of EVs from the cells. The EVs derived from infected cells, but not from uninfected cells, activated innate immunity in recipient cells and suppressed viral gene expression and virus replication. Moreover, only the EVs derived from infected cells stimulated the expression of a subset of M1-type markers in recipient macrophages. Conversely, EVs derived from STING-knockdown cells failed to stimulate the expression of these M1-type markers, they activated innate immune responses to a lesser extent in recipient cells, and they did not sustain the inhibition of virus replication. These data suggest that STING from the EV donor cells contributes to the antiviral responses in cells receiving EVs from HSV-1-infected cells. Perturbations in the biogenesis of EVs by silencing CD63 or blocking the activity of the neutral spingomyelinase-2 (nSMase-2) increased the HSV-1 yields. Overall, our data suggest that the EVs released from HSV-1-infected cells negatively impact the infection and could control the dissemination of the virus.IMPORTANCE Extracellular vesicles (EVs) are released by all types of cells as they constitute major mechanism of intercellular communication and have the capacity to alter the functions of recipient cells despite their limited capacity for cargo. How the EVs released by HSV-infected cells could alter the surrounding microenvironment and influence the infection currently remains unknown. The cargo of EVs reflects the physiological state of the cells in which they were produced, so the content of EVs originating from infected cells is expected to be substantially different from that of healthy cells. Our studies indicate that the EVs released by HSV-1-infected cells carry innate immune components such as STING and other host and viral factors; they can activate innate immune responses in recipient cells and inhibit HSV-1 replication. The implication of these data is that the EVs released by HSV-1-infected cells could control HSV-1 dissemination promoting its persistence in the host.


Assuntos
Vesículas Extracelulares/metabolismo , Herpesvirus Humano 1/fisiologia , Imunidade Inata , Interferons/genética , Proteínas de Membrana/genética , Replicação Viral/genética , Animais , Chlorocebus aethiops , Vesículas Extracelulares/química , Vesículas Extracelulares/imunologia , Fibroblastos/virologia , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Tetraspanina 29/genética , Tetraspanina 30/genética , Células Vero
10.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093081

RESUMO

Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways.IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4+ T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell.


Assuntos
HIV-1/fisiologia , Herpesvirus Humano 1/fisiologia , Interações Microbianas , Proteínas Virais/metabolismo , Replicação Viral , Linhagem Celular , Glicoproteínas/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp160 do Envelope de HIV/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteólise , Proteínas da Matriz Viral/metabolismo
11.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179534

RESUMO

Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2'3'-cyclic GAMP (2'3'-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway.IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1.


Assuntos
Neoplasias Ósseas/patologia , Proteínas Imediatamente Precoces/genética , Proteínas de Membrana/genética , Osteossarcoma/patologia , Simplexvirus , Ubiquitina-Proteína Ligases/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/virologia , Linhagem Celular Tumoral , GMP Cíclico/farmacologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Osteossarcoma/genética , Osteossarcoma/virologia , Fosfoproteínas/metabolismo , Simplexvirus/genética , Simplexvirus/crescimento & desenvolvimento , Simplexvirus/imunologia , Transativadores/genética , Replicação Viral/genética
12.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28592536

RESUMO

The stimulator of interferon (IFN) genes (STING) is a broad antimicrobial factor that restricts herpes simplex virus (HSV) by activating type I interferon and proinflammatory responses upon sensing of foreign DNA. UL46 is one of the most abundant tegument proteins of HSV-1, but a well-established function has yet to be found. We found that the HSV-1 UL46 protein interacts with and colocalizes with STING. A ΔUL46 virus displayed growth defects and activated innate immunity, but both effects were alleviated in STING knockdown cells. UL46 was also required for the inhibition of the 2',3'-cyclic GMP-AMP (cGAMP)-dependent immune responses during infection. In cells expressing UL46, out of the context of the infection, innate immunity to a ΔICP0 virus was largely compromised, and that permitted ICP0-deficient mutants to replicate. The UL46-expressing cell lines also rescued the defects of the ΔUL46 virus and enhanced wild-type virus infection. The UL46-expressing cell lines did not activate interferon-stimulated gene (ISG) transcription following treatment with the noncanonical cyclic dinucleotide 2',3'-cGAMP, suggesting that the STING pathway may be compromised. Indeed, we found that both proteins STING and IFI16 were eliminated in cells constitutively expressing UL46 and that the accumulation of their transcripts was blocked. Finally, we demonstrated that UL46 via its N terminus binds to STING and, via its C terminus, to TBK1. These interactions appear to modulate the functions of STING during HSV-1 infection. Taken together, our studies describe a novel function for one of the least-studied proteins of HSV, the tegument protein UL46, and that function involves the evasion of foreign DNA-sensing pathways.IMPORTANCE Herpes simplex virus 1 (HSV-1) afflicts 80% of the population worldwide, causing various diseases. After initial infection, the virus establishes latent reservoirs in sensory neurons and persists for life. Here we describe novel interactions between HSV-1 and the DNA sensor STING. We found that (i) HSV-1 tegument protein UL46 interacts with and colocalizes with STING; (ii) UL46 expressed out of the context of the infection blocks type I interferon triggered by STING stimuli, through the elimination of STING and of interferon-inducible protein 16 (IFI16); (iii) a ΔUL46 virus displayed growth defects, which were rescued in STING knockdown cells; (iv) the ΔUL46 virus failed to block innate immunity triggered by ligands of STING such as 2',3'-cGAMP and also activated IFN-ß and ISG expression; and (v) UL46 binds to both STING and TBK1 through different domains. We conclude that UL46 counteracts the actions of STING during HSV-1 infection.


Assuntos
Antígenos Virais/metabolismo , DNA Viral/metabolismo , Herpesvirus Humano 1/patogenicidade , Evasão da Resposta Imune , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos
13.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381567

RESUMO

The Cbl E3 ligase has been linked to the down-modulation of surface signaling responses by inducing internalization of surface receptors. The adaptor protein CIN85 is a partner of Cbl that augments many of these interactions. Previously, an interaction was demonstrated between ICP0 and CIN85, which results in the removal of epidermal growth factor receptor (EGFR) from the surface of the infected cells with a concomitant attenuation of EGFR signaling. Here, we examined whether Cbl mediates the removal of the herpes simplex virus 1 (HSV-1) entry receptor Nectin-1 from the surface of infected cells. We found the following: (i) that Cbl, Nectin-1, and the viral glycoprotein D (gD) form a complex in infected cells; (ii) that during infection Nectin-1 is removed from the surface of the infected cells but is retained on the surface of cells that have been depleted of Cbl; and (iii) that in cells infected with a ΔICP0 mutant virus, Nectin-1 remained on the cell surface. Thus, Cbl is necessary but not sufficient for the removal of Nectin-1 from the cell surface. In addition, we observed that in Cbl-depleted cells there was enhanced entry after infection. These cells were susceptible to secondary infections by HSV-1. Viral entry in CIN85-depleted cells was only moderately enhanced compared to that in the Cbl-depleted cells, suggesting that the Cbl-Nectin-1 interaction is likely the key to the downregulation of surface Nectin-1. The removal of the HSV-1 entry receptor Nectin-1 from the surface of the infected cells may be part of the strategy of the virus to efficiently spread to uninfected cells.IMPORTANCE The Cbl E3 ligase suppresses surface signaling responses by inducing internalization of surface components. The targets of Cbl include such components as immune system receptors, growth factor receptors, adhesion, and cell-to-cell contact molecules. The immediate early protein ICP0 of herpes simplex virus 1 (HSV-1) interacts with CIN85, an adaptor protein that augments Cbl functions. The consequence of this interaction is the removal of the epidermal growth factor receptor (EGFR) from the surface of the infected cells with concomitant suppression of the EGF ligand signaling. The viral entry receptor Nectin-1 is also internalized during HSV-1 infection in a Cbl-dependent mechanism, and that increases the opportunity of the virus to spread to uninfected cells. The diversion of the Cbl/CIN85 endocytic machinery may be a strategy utilized by the virus to alter the cell surface pattern to prevent detrimental host responses.


Assuntos
Moléculas de Adesão Celular/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Internalização do Vírus , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Endocitose , Receptores ErbB/deficiência , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Células Hep G2 , Herpesvirus Humano 1/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Nectinas , Proteínas Proto-Oncogênicas c-cbl/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(5): E611-7, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449861

RESUMO

STING (stimulator of IFN genes) activates the IFN pathway in response to cytosolic DNA. Knockout of STING in mice was reported to exacerbate the pathogenicity of herpes simplex virus 1 (HSV-1). Here we report the following: (i) STING is stable in cancer-derived HEp-2 or HeLa cells infected with wild-type HSV-1 but is degraded in cells infected with mutants lacking the genes encoding functional infected cell protein 0 (ICP0), ICP4, or the US3 protein kinase (US3-PK). In HEp-2 cells, depletion of STING by shRNA results in a decrease in the yields of wild-type or ΔICP0 viruses. (ii) STING is stable throughout infection with either wild-type or ICP0 mutant viruses in human embryonic lung cells (HEL) or HEK293T cells derived from normal tissues. In these cells, depletion of STING results in higher yields of both wild-type and ΔICP0 viruses. (iii) The US3-PK is also required for stabilization of IFI16, a nuclear DNA sensor. However, the stability of IFI16 does not correlate positively or negatively with that of STING. IFI16 is stable in STING-depleted HEL cells infected with wild-type virus. In contrast to HEL cells, IFI16 was undetectable in STING-depleted HEp-2 cells, and hence the role of HSV-1 in maintaining IFI16 could not be ascertained. The results indicate that in HSV-1-infected cells the stability of IFI16 and the function and stability of STING are dependent on cell derivation, the functional integrity of ICP0, and US3-PK, an indication that in wild-type virus-infected cells both proteins are actively stabilized. In HEp-2 cells, the stability of IFI16 requires STING.


Assuntos
Herpesvirus Humano 1/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Animais , Células HEK293 , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , Mutação/genética , Proteínas Quinases/metabolismo , Estabilidade Proteica , Replicação Viral
15.
Proc Natl Acad Sci U S A ; 111(46): E4991-6, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368198

RESUMO

STING (stimulator of IFN genes) activates the IFN-dependent innate immune response to infection on sensing the presence of DNA in cytosol. The quantity of STING accumulating in cultured cells varies; it is relatively high in some cell lines [e.g., HEp-2, human embryonic lung fibroblasts (HEL), and HeLa] and low in others (e.g., Vero cells). In a preceding publication we reported that STING was stable in four cell lines infected with herpes simplex virus 1 and that it was actively stabilized in at least two cell lines derived from human cancers. In this report we show that STING is exported from HEp-2 cells to Vero cells along with virions, viral mRNAs, microRNAs, and the exosome marker protein CD9. The virions and exosomes copurified. The quantity of STING and CD9 exported from one cell line to another was inoculum-size-dependent and reflected the levels of STING and CD9 accumulating in the cells in which the virus inoculum was made. The export of STING, an innate immune sensor, and of viral mRNAs whose major role may be in silencing viral genes in latently infected neurons, suggests that the virus has evolved mechanisms that curtail rather than foster the spread of infection under certain conditions.


Assuntos
Exossomos/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Animais , Transporte Biológico , Comunicação Celular/fisiologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Microambiente Celular , Chlorocebus aethiops , Exossomos/química , Herpes Simples/transmissão , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Imunoprecipitação , Proteínas de Membrana/deficiência , Tetraspanina 29/análise , Células Vero , Proteínas Virais/genética , Proteínas Virais/fisiologia , Vírion/isolamento & purificação , Virulência , Ativação Viral , Replicação Viral
16.
Virol J ; 13: 63, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048572

RESUMO

Extracellular vesicles are defined as a heterogeneous group of vesicles that are released by prokaryotic to higher eukaryotic cells and by plant cells in an evolutionary conserved manner. The significance of these vesicles lies in their capacity to transfer selected cargo composed of proteins, lipids and nucleic acids to both recipient and parent cells and to influence various physiological and pathological functions. Microorganisms such as parasites, fungi and protozoa and even single cell organisms such as bacteria generate extracellular vesicles. In addition, several viruses have evolved strategies to hijack the extracellular vesicles for egress or to alter the surrounding environment. The thesis of this article is that: a) during HSV-1 infection vesicles are delivered from infected to uninfected cells that influence the infection; b) the cargo of these vesicles consists of viral and host transcripts (mRNAs, miRNAs and non-coding RNAs) and proteins including innate immune components, such as STING; and c) the viral vesicles carry the tetraspanins CD9, CD63 and CD81, which are considered as markers of exosomes. Therefore, we assume that the STING-carrying vesicles, produced during HSV-1 infection, are reminiscent to exosomes. The presumed functions of the exosomes released from HSV-1 infected cells include priming the recipient cells and accelerating antiviral responses to control the dissemination of the virus. This may be one strategy used by the virus to prevent the elimination by the host and establish persistent infection. In conclusion, the modification of the cargo of exosomes appears to be part of the strategy that HSV-1 has evolved to establish lifelong persistent infections into the human body to ensure successful dissemination between individuals.


Assuntos
Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Herpesvirus Humano 1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , MicroRNAs/análise , RNA Mensageiro/análise , RNA Viral/análise , Transporte Biológico , Herpesvirus Humano 1/imunologia , Humanos
17.
mBio ; 15(4): e0037324, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470056

RESUMO

The STimulator of INterferon Genes (STING) constitutes a major DNA-sensing pathway that restricts HSV-1 infection in different models by activating type I interferon and pro-inflammatory responses. To counteract STING, HSV-1 has evolved numerous strategies including mechanisms to interfere with its oligomerization, post-translational modifications, and downstream signaling. Previously, we demonstrated that STING is packaged in extracellular vesicles (EVs) produced from HSV-1-infected cells. These EVs activated antiviral responses in uninfected recipient cells and suppressed a subsequent HSV-1 infection in a STING-dependent manner. Here, we provide information on the packaging of STING in EVs and its exocytosis. We found that STING exocytosis did not occur in CD63 knockdown cells supporting that STING follows the CD63 exocytosis pathway. Consistently, we found that STING co-localized with CD63 in cytoplasmic globular structures and exosomal STING and CD63 co-fractionated. Both golgicide A and brefeldin A prevented STING exocytosis during HSV-1 infection suggesting that STING trafficking through the Golgi is required. A STING ligand was insufficient for STING exocytosis, and downstream signaling through TBK1 was not required. However, STING palmitoylation and tethering to the ER by STIM1 were required for STING exocytosis. Finally, we found that HSV-1 replication/late gene expression triggered CD63 exocytosis that was required for STING exocytosis. Surprisingly, HSV-2 strain G did not trigger CD63 or STING exocytosis as opposed to VZV and HCMV. Also, EVs from HSV-1(F)- and HSV-2(G)-infected cells displayed differences in their ability to restrict these viruses. Overall, STING exocytosis is induced by certain viruses and shapes the microenvironment of infection.IMPORTANCEExtracellular vesicles (EVs) are released by all types of cells as they constitute a major mechanism of intercellular communication. The packaging of specific cargo in EVs and the pathway of exocytosis are not fully understood. STING is a sensor of a broad spectrum of pathogens and a key component of innate immunity. STING exocytosis during HSV-1 infection has been an intriguing observation, raising questions of whether this is a virus-induced process, the purpose it serves, and whether it is observed after infection with other viruses. Here, we have provided insights into the pathway of STING exocytosis and determined factors involved. STING exocytosis is a virus-induced process and not a response of the host to the infection. Besides HSV-1, other herpes viruses triggered STING exocytosis, but HSV-2(G) did not. HSV-1 EVs displayed different restriction capabilities compared with HSV-2(G) EVs. Overall, STING exocytosis is triggered by viruses to shape the microenvironment of infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Exocitose , Herpesvirus Humano 1/fisiologia , Imunidade Inata , Proteínas de Membrana/metabolismo
18.
J Virol ; 86(23): 12871-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22993145

RESUMO

Earlier studies reported that ICP0, a key regulatory protein encoded by herpes simplex virus 1 (HSV-1), binds ubiquitin-specific protease 7 (USP7). The fundamental conclusion of these studies is that depletion of USP7 destabilized ICP0, that ICP0 mediated the degradation of USP7, and that amino acid substitutions in ICP0 that abolished binding to USP7 significantly impaired the ability of HSV-1 to replicate. We show here that, indeed, depletion of USP7 leads to reduction of ICP0 and that USP7 is degraded in an ICP0-dependent manner. However, overexpression of USP7 or substitution in ICP0 of a single amino acid to abolish binding to USP7 accelerated the accumulation of viral mRNAs and proteins at early times after infection and had no deleterious effect on virus yields. A clue as to why USP7 is degraded emerged from the observation that, notwithstanding the accelerated expression of viral genes, the plaques formed by the mutant virus were very small, implying a defect in virus transmission from cell to cell.


Assuntos
Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 1/metabolismo , Proteínas Imediatamente Precoces/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Sequência de Bases , Chlorocebus aethiops , Primers do DNA/genética , Imunofluorescência , Células HEK293 , Herpesvirus Humano 1/genética , Humanos , Immunoblotting , Imunoprecipitação , Dados de Sequência Molecular , Mutação/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Peptidase 7 Específica de Ubiquitina , Células Vero
19.
Proc Natl Acad Sci U S A ; 107(41): 17721-6, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20876123

RESUMO

Expression of herpes simplex virus genes at the initiation of replication involves two steps that take place at ND10 nuclear bodies. These are suppression of cellular repressors that attempt to silence viral DNA and remodeling of the viral chromatin to make it accessible for transcription. In earlier studies we reported on the mechanism by which viral proteins ICP0 and U(S)3 protein kinase modify and disrupt the HDAC1/CoREST/REST/LSD1 repressor complex. The remodeling step requires in addition acetylation of histones bound to DNA. In an attempt to identify the enzyme, we took note of the observation that ICP0 physically and functionally interacts with Bmal1, a partner of the CLOCK histone acetyl transferase, and key members of the bHLH-PAS family of transcriptional factors. The Bmal11 and CLOCK heterodimer is best known as a regulator of the circadian oscillation in the mammalian CLOCK system. In this article we report the following: (i) in infected cells both Bmal1 and CLOCK localize at ND10 bodies; (ii) wild-type virus stabilizes the CLOCK protein; (iii) overexpression of CLOCK partially compensates for the absence of ICP0 and enables higher yields in cells infected with a ΔICP0 mutant and this activity is not expressed by CLOCK mutants lacking histone acetyl transferase activity; and (iv) depletion of CLOCK in cells infected with wild-type virus results in significant decrease in the expression of all viral proteins tested. We conclude that ICP0 interacts with Bmal1 and by extension with CLOCK histone acetyl transferase to remodel viral chromatin.


Assuntos
Proteínas CLOCK/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 1/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Integração Viral/fisiologia , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Montagem e Desmontagem da Cromatina/genética , Primers do DNA/genética , Herpesvirus Humano 1/genética , Humanos , Immunoblotting , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Interferência de RNA , Transfecção , Células Vero
20.
bioRxiv ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37547007

RESUMO

The open reading frame 3a (ORF3a) is an accessory transmembrane protein that is important to the pathogenicity of SARS-CoV-2. The cytoplasmic domain of ORF3a has three canonical tyrosine-based sorting signals (YxxΦ; where x is any amino acid and Φ is a hydrophobic amino acid with a bulky -R group). They have been implicated in the trafficking of membrane proteins to the cell plasma membrane and to intracellular organelles. Previous studies have indicated that mutation of the 160YSNV163 motif abrogated plasma membrane expression and inhibited ORF3a-induced apoptosis. However, two additional canonical tyrosine-based sorting motifs (211YYQL213, 233YNKI236) exist in the cytoplasmic domain of ORF3a that have not been assessed. We removed all three potential tyrosine-based motifs and systematically restored them to assess the importance of each motif or combination of motifs that restored efficient trafficking to the cell surface and lysosomes. Our results indicate that the YxxΦ motif at position 160 was insufficient for the trafficking of ORF3a to the cell surface. Our studies also showed that ORF3a proteins with an intact YxxΦ at position 211 or at 160 and 211 were most important. We found that ORF3a cell surface expression correlated with the co-localization of ORF3a with LAMP-1 near the cell surface. These results suggest that YxxΦ motifs within the cytoplasmic domain may act cooperatively in ORF3a transport to the plasma membrane and endocytosis to lysosomes. Further, our results indicate that certain tyrosine mutants failed to activate caspase 3 and did not correlate with autophagy functions associated with this protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA