Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci Res ; 99(11): 2774-2792, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520578

RESUMO

Myelination is crucial for the development and maintenance of axonal integrity, especially fast axonal action potential conduction. There is increasing evidence that glutamate signaling and release through neuronal activity modulates the myelination process. In this study, we examine the effect of manipulating glutamate signaling on myelination of oligodendrocyte (OL) lineage cells and their development in zebrafish (zf). We use the "intensity-based glutamate-sensing fluorescent reporter" (iGluSnFR) in the zf model (both sexes) to address the hypothesis that glutamate is implicated in regulation of myelinating OLs. Our results show that glial iGluSnFR expression significantly reduces OL lineage cell number and the expression of myelin markers in larvae (zfl) and adult brains. The specific glutamate receptor agonist, L-AP4, rescues this iGluSnFR effect by significantly increasing the expression of the myelin-related genes, plp1b and mbpa, and enhances myelination in L-AP4-injected zfl compared to controls. Furthermore, we demonstrate that degrading glutamate using Glutamat-Pyruvate Transaminase (GPT) or the blockade of glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC) significantly decreases myelin-related genes and drastically declines myelination in brain ventricle-injected zfl. Moreover, we found that myelin-specific ClaudinK (CldnK) and 36K protein expression is significantly decreased in iGluSnFR-expressing zfl and adult brains compared to controls. Taken together, this study confirms that glutamate signaling is directly required for the preservation of myelinating OLs and for the myelination process itself. These findings further suggest that glutamate signaling may provide novel targets to therapeutically boost remyelination in several demyelinating diseases of the CNS.


Assuntos
Oligodendroglia , Peixe-Zebra , Animais , Axônios/metabolismo , Feminino , Glutamatos/metabolismo , Masculino , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
2.
Genet Med ; 23(9): 1715-1725, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34054129

RESUMO

PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.


Assuntos
Anormalidades do Olho , Transtornos do Neurodesenvolvimento , Animais , Anormalidades do Olho/genética , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Receptores de Superfície Celular , Peixe-Zebra/genética
4.
Sci Rep ; 14(1): 22909, 2024 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358471

RESUMO

Isl1 has been described as an embryonic master control gene expressed in the pericloacal mesenchyme. Deletion of Isl1 from the genital mesenchyme in mice leads to an ectopic urethral opening and epispadias-like phenotype. Using genome wide association methods, we identified ISL1 as the key susceptibility gene for classic bladder exstrophy (CBE), comprising epispadias and exstrophy of the urinary bladder. The most significant marker (rs6874700) identified in our recent GWAS meta-analysis achieved a p value of 1.48 × 10- 24 within the ISL1 region. In silico analysis of rs6874700 and all other genome-wide significant markers in Linkage Disequilibrium (LD) with rs6874700 (D' = 1.0; R2 > 0.90) revealed marker rs2303751 (p value 8.12 × 10- 20) as the marker with the highest regulatory effect predicted. Here, we describe a novel 1.2 kb intragenic promoter residing between 6.2 and 7.4 kb downstream of the ISL1 transcription starting site, which is located in the reverse DNA strand and harbors a binding site for EZH2 at the exact region of marker rs2303751. We show, that EZH2 silencing in HEK cells reduces ISL1 expression. We show that ezh2-/- knockout (KO) zebrafish larvae display tissues specificity of ISL1 regulation with reduced expression of Isl1 in the pronephric region of zebrafish larvae. In addition, a shorter and malformed nephric duct is observed in ezh2-/- ko zebrafish Tg(wt1ß:eGFP) reporter lines. Our study shows, that Ezh2 is a key regulator of Isl1 during urinary tract formation and suggests tissue specific ISL1 dysregulation as an underlying mechanism for CBE formation.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas com Homeodomínio LIM , Fatores de Transcrição , Peixe-Zebra , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Humanos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Extrofia Vesical/genética , Extrofia Vesical/metabolismo , Sistema Urinário/metabolismo , Sistema Urinário/anormalidades , Sistema Urinário/embriologia , Regiões Promotoras Genéticas , Estudo de Associação Genômica Ampla
5.
NPJ Genom Med ; 9(1): 18, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429302

RESUMO

CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA