Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Clin Microbiol ; 62(6): e0162923, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38687021

RESUMO

Botulism is a paralytic disease due to the inhibition of acetylcholine exocytosis at the neuromuscular junction, which can be lethal if left untreated. Botulinum neurotoxins (BoNTs) are produced by some spore-forming Clostridium bacteria. The current confirmatory assay to test for BoNTs in clinical specimens is the gold-standard mouse bioassay. However, an Endopep-MS assay method has been developed to detect BoNTs in clinical samples using benchtop mass spectrometric detection. This work demonstrates the validation of the Endopep-MS method for clinical specimens with the intent of method distribution in public health laboratories. The Endopep-MS assay was validated by assessing the sensitivity, robustness, selectivity, specificity, and reproducibility. The limit of detection was found to be equivalent to or more sensitive than the mouse bioassay. Specificity studies determined no cross-reactivity between the different serotypes and no false positives from an exclusivity panel of culture supernatants of enteric disease organisms and non-toxigenic strains of Clostridium. Inter-serotype specificity testing with 19 BoNT subtypes was 100% concordant with the expected results, accurately determining the presence of the correct serotype and the absence of incorrect serotypes. Additionally, a panel of potential interfering substances was used to test selectivity. Finally, clinical studies included clinical specimen stability and reproducibility, which was found to be 99.9% from a multicenter evaluation study. The multicenter validation study also included a clinical validation study, which yielded a 99.4% correct determination rate. Use of the Endopep-MS method will improve the capacity and response time for laboratory confirmation of botulism in public health laboratories.


Assuntos
Toxinas Botulínicas , Botulismo , Espectrometria de Massas , Sensibilidade e Especificidade , Humanos , Toxinas Botulínicas/análise , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Botulismo/diagnóstico , Animais , Camundongos , Bioensaio/métodos
2.
Chem Res Toxicol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963334

RESUMO

Abrin and ricin are toxic proteins produced by plants. Both proteins are composed of two subunits, an A-chain and a B-chain. The A-chain is responsible for the enzymatic activity, which causes toxicity. The B-chain binds to glycoproteins on the cell surface to direct the A-chain to its target. Both toxins depurinate 28S rRNA, making it impossible to differentiate these toxins based on only their enzymatic activity. We developed an analytical workflow for both ricin and abrin using a single method and sample. We have developed a novel affinity enrichment technique based on the ability of the B-chain to bind a glycoprotein, asialofetuin. After the toxin is extracted with asialofetuin-coated magnetic beads, an RNA substrate is added. Then, depurination is detected by a benchtop matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer to determine the presence or absence of an active toxin. Next, the beads are subjected to tryptic digest. Toxin fingerprinting is done on a benchtop MALDI-TOF MS. We validated the assay through sensitivity and specificity studies and determined the limit of detection for each toxin as nanogram level for enzymatic activity and µg level for toxin fingerprinting. We examined potential cross-reactivity from proteins that are near neighbors of the toxins and examined potential false results in the presence of white powders.

3.
Anal Biochem ; 631: 114364, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487718

RESUMO

Ricin is a toxic protein derived from the castor bean plant (Ricinus communis) and has potential for bioterrorism or criminal use. Therefore, sensitive and rapid analytical methods are needed for its confirmatory detection in environmental samples. Our laboratory previously reported on the development of a confirmatory method to detect ricin involving antibody capture of ricin followed by mass spectrometric detection of ricin's enzymatic activity and of tryptic fragments unique to ricin. Here, we describe a novel ricin capture method of magnetic beads coated with 4-aminophenyl-1-thiol-ß-galactopyranoside, using ricin's lectin characteristics. The assay has been adapted for use on a simple, benchtop MALDI-TOF MS mass spectrometer common in clinical microbiology laboratories. Validation of the novel assay includes establishment of a limit of detection, and an examination of assay selectivity. The limit of detection of the enzymatic activity method is 8 ng/mL and 500 ng/mL for the confirmatory tryptic fragment assay. The assay is highly selective with no cross-reactivity from near neighbors and highly specific with a panel of 19 cultivars all testing positive. Additionally, there were no interferences found during testing of a panel of white powders. This allows for a confirmatory detection method for ricin in laboratories lacking expensive, sophisticated mass spectrometers.


Assuntos
Microesferas , Ricina/análise , Ricina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Anticorpos/química , Contaminação de Alimentos/análise , Galactose/química , Lactase/química , Limite de Detecção , Fenômenos Magnéticos , Leite/química , Extratos Vegetais/análise , Pós/análise , Pós/química , Reprodutibilidade dos Testes , Ricina/metabolismo , Ricinus/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Tripsina/química
4.
Anal Bioanal Chem ; 411(21): 5489-5497, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31172236

RESUMO

Clostridium botulinum produces botulinum neurotoxins (BoNTs) that are one of the most poisonous substances. In order to respond to public health emergencies, there is a need to develop sensitive and specific methods for detecting botulinum toxin in various clinical matrices. Our laboratory has developed a mass spectrometry-based Endopep-MS assay that is able to rapidly detect and differentiate BoNT serotypes A-G by immunoaffinity capture of toxins and detection of unique cleavage products of peptide substrates. To improve the sensitivity of the Endopep-MS assay for the detection of BoNT serotype G, we report here the optimization of synthetic peptide substrates through systematic substitution, deletion, and incorporation of unnatural amino acids. Our data show that the resulting optimized peptides produced a significant improvement (two orders of magnitude) in assay sensitivity and allowed the detection of 0.01 mouseLD50 toxin present in buffer solution.


Assuntos
Toxinas Botulínicas/análise , Peptídeos/química , Humanos , Limite de Detecção
5.
Anal Bioanal Chem ; 409(20): 4779-4786, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28573317

RESUMO

Rapid and sensitive detection of botulinum neurotoxins (BoNTs), which cause botulism, is essential in a public health emergency or bioterrorism event. We have previously developed a mass spectrometry (MS)-based functional method, Endopep-MS assay, for the fast detection and differentiation of all BoNT serotypes by affinity enriching the toxin and detecting the serotype-specific cleavage products of peptide substrates derived from the in vivo targets. To improve the performance of the Endopep-MS assay, we report here the further optimization of the peptide substrate for the detection of serotype A botulinum neurotoxins. An increased substrate cleavage was achieved by extending the original peptide N-terminus with optimized amino acid sequence, increasing the detection sensitivity of the method. In addition, the resistance of the substrate to nonspecific hydrolysis was dramatically improved by selectively substituting amino acids at the scissile bond and various other positions of the extended peptide. Moreover, incorporating the N-terminal hydrophobic residues dramatically improved the relative intensity of the cleavage products in the mass spectra. This allowed easy detection of the cleavage products, further enhancing the performance of the assay. The limit of detection for spiked serum sample was enhanced from 0.5 to 0.1 mouseLD50 and from 0.5 to 0.2 mouseLD50 for spiked stool. Graphical abstract Mass spectra of optimized and old peptide substrates with BoNT/A.


Assuntos
Toxinas Botulínicas/análise , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Limite de Detecção , Camundongos
6.
J Infect Dis ; 213(3): 379-85, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26068781

RESUMO

Botulism is a potentially fatal paralytic disease caused by the action of botulinum neurotoxin (BoNT) on nerve cells. There are 7 known serotypes (A-G) of BoNT and up to 40 genetic variants. Clostridium botulinum strain IBCA10-7060 was recently reported to produce BoNT serotype B (BoNT/B) and a novel BoNT, designated as BoNT/H. The BoNT gene (bont) sequence of BoNT/H was compared to known bont sequences. Genetic analysis suggested that BoNT/H has a hybrid-like structure containing regions of similarity to the structures of BoNT/A1 and BoNT/F5. This novel BoNT was serologically characterized by the mouse neutralization assay and a neuronal cell-based assay. The toxic effects of this hybrid-like BoNT were completely eliminated by existing serotype A antitoxins, including those contained in multivalent therapeutic antitoxin products that are the mainstay of human botulism treatment.


Assuntos
Antitoxina Botulínica/farmacologia , Toxinas Botulínicas/química , Toxinas Botulínicas/classificação , Animais , Bioensaio , Humanos , Camundongos
7.
Anal Chem ; 88(13): 6867-72, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27264550

RESUMO

Ricin is a highly toxic protein which causes cell death by blocking protein synthesis and is considered a potential bioterrorism agent. Rapid and sensitive detection of ricin toxin in various types of sample matrices is needed as an emergency requirement for public health and antibioterrorism response. An in vitro MALDI TOF MS-based activity assay that detects ricin mediated depurination of synthetic substrates was improved through optimization of the substrate, reaction conditions, and sample preparation. In this method, the ricin is captured by a specific polycolonal antibody followed by hydrolysis reaction. The ricin activity is determined by detecting the unique cleavage product of synthetic oligomer substrates. The detection of a depurinated substrate was enhanced by using a more efficient RNA substrate and optimizing buffer components, pH, and reaction temperature. In addition, the factors involved in mass spectrometry analysis, such as MALDI matrix, plate, and sample preparation, were also investigated to improve the ionization of the depurinated product and assay reproducibility. With optimized parameters, the limit of detection of 0.2 ng/mL of ricin spiked in buffer and milk was accomplished, representing more than 2 orders of magnitude enhancement in assay sensitivity. Improving assay's ruggeddness or reproducibility also made it possible to quantitatively detect active ricin with 3 orders of magnitude dynamic range.

8.
Anal Chem ; 87(7): 3911-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25731972

RESUMO

A unique strain of Clostridium botulinum (IBCA10-7060) was recently discovered which produces two toxins: botulinum neurotoxin (BoNT) serotype B and a novel BoNT reported as serotype H. Previous molecular assessment showed that the light chain (LC) of the novel BoNT most resembled the bont of the light chain of known subtype F5, while the C-terminus of the heavy chain (HC) most resembled the binding domain of serotype A. We evaluated the functionality of both toxins produced in culture by first incorporating an immunoaffinity step using monoclonal antibodies to purify BoNT from culture supernatants and tested each immune-captured neurotoxin with full-length substrates vesicle-associated membrane protein 2 (VAMP-2), synaptosomal-associated protein 25 (SNAP-25), syntaxin, and shortened peptides representing the substrates. The BoNT/B produced by this strain behaved as a typical BoNT/B, having immunoaffinity for anti-B monoclonal antibodies and cleaving both full length VAMP-2 and a peptide based on the sequence of VAMP-2 in the expected location. As expected, there was no activity toward SNAP-25 or syntaxin. The novel BoNT demonstrated immunoaffinity for anti-A monoclonal antibodies but did not cleave SNAP-25 as expected for BoNT/A. Instead, the novel BoNT cleaved VAMP-2 and VAMP-2-based peptides in the same location as BoNT/F5. This is the first discovery of a single botulinum neurotoxin with BoNT/A antigenicity and BoNT/F light chain function. This work suggests that the newly reported serotype H may actually be a hybrid of previously known BoNT serotype A and serotype F, specifically subtype F5.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas/metabolismo , Clostridium botulinum/química , Toxinas Botulínicas/química , Toxinas Botulínicas Tipo A/química , Cromatografia Líquida , Clostridium botulinum/metabolismo , Espectrometria de Massas
9.
BMC Microbiol ; 15: 227, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494251

RESUMO

BACKGROUND: The disease botulism is caused by intoxication with botulinum neurotoxins (BoNTs), extremely toxic proteins which cause paralysis. This neurotoxin is produced by some members of the Clostridium botulinum and closely related species, and is produced as a protein complex consisting of the neurotoxin and neurotoxin-associated proteins (NAPs). There are seven known serotypes of BoNT, A-G, and the composition of the NAPs can differ between these serotypes. It was previously published that the BoNT/G complex consisted of BoNT/G, nontoxic-nonhemagglutinin (NTNH), Hemagglutinin 70 (HA-70), and HA-17, but that HA-33, a component of the protein complex of other serotypes of BoNT, was not found. METHODS: Components of the BoNT/G complex were first separated by SDS-PAGE, and bands corresponding to components of the complex were digested and analyzed by LC-MS/MS. RESULTS: Gel bands were identified with sequence coverages of 91% for BoNT/G, 91% for NTNH, 89% for HA-70, and 88% for HA-17. Notably, one gel band was also clearly identified as HA-33 with 93% sequence coverage. CONCLUSIONS: The BoNT/G complex consists of BoNT/G, NTNH, HA-70, HA-17, and HA-33. These proteins form the progenitor form of BoNT/G, similar to all other HA positive progenitor toxin complexes.


Assuntos
Toxinas Botulínicas/análise , Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Clostridium botulinum/metabolismo , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas em Tandem
10.
Anal Biochem ; 468: 15-21, 2015 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-25232998

RESUMO

Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most poisonous substances known to humankind. It is essential to have a simple, quick, and sensitive method for the detection and quantification of botulinum toxin in various media, including complex biological matrices. Our laboratory has developed a mass spectrometry-based Endopep-MS assay that is able to rapidly detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Botulinum neurotoxin type E (BoNT/E) is a member of a family of seven distinctive BoNT serotypes (A-G) and is the causative agent of botulism in both humans and animals. To improve the sensitivity of the Endopep-MS assay, we report here the development of novel peptide substrates for the detection of BoNT/E activity through systematic and comprehensive approaches. Our data demonstrate that several optimal peptides could accomplish 500-fold improvement in sensitivity compared with the current substrate for the detection of both not-trypsin-activated and trypsin-activated BoNT/E toxin complexes. A limit of detection of 0.1 mouse LD50/ml was achieved using the novel peptide substrate in the assay to detect not-trypsin-activated BoNT/E complex spiked in serum, stool, and food samples.


Assuntos
Toxinas Botulínicas/análise , Neurotoxinas/análise , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Bioensaio/métodos , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/toxicidade , Humanos , Dose Letal Mediana , Limite de Detecção , Espectrometria de Massas/métodos , Espectrometria de Massas/estatística & dados numéricos , Camundongos , Neurotoxinas/toxicidade , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Tripsina/metabolismo
11.
Bioorg Med Chem ; 23(13): 3667-73, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25913863

RESUMO

It is essential to have a simple, quick and sensitive method for the detection and quantification of botulinum neurotoxins, the most toxic substances and the causative agents of botulism. Type C botulinum neurotoxin (BoNT/C) represents one of the seven members of distinctive BoNT serotypes (A to G) that cause botulism in animals and avians. Here we report the development of optimized peptide substrates for improving the detection of BoNT/C and /CD mosaic toxins using an Endopep-MS assay, a mass spectrometry-based method that is able to rapidly and sensitively detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Based on the sequence of a short SNAP-25 peptide, we conducted optimization through a comprehensive process including length determination, terminal modification, single and multiple amino acid residue substitution, and incorporation of unnatural amino acid residues. Our data demonstrate that an optimal peptide provides a more than 200-fold improvement over the substrate currently used in the Endopep-MS assay for the detection of BoNT/C1 and /CD mosaic. Using the new substrate in a four-hour cleavage reaction, the limit of detection for the BoNT/C1 complex spiked in buffer, serum and milk samples was determined to be 0.5, 0.5 and 1mouseLD50/mL, respectively, representing a similar or higher sensitivity than that obtained by traditional mouse bioassay.


Assuntos
Anticorpos Monoclonais/química , Bioensaio , Toxinas Botulínicas/sangue , Peptídeos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação de Anticorpos , Clostridium botulinum/química , Humanos , Limite de Detecção , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Peptídeos/síntese química , Ligação Proteica , Proteólise
12.
Biochim Biophys Acta ; 1834(12): 2722-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096023

RESUMO

Clostridium botulinum neurotoxins (BoNTs) cause the life-threatening disease botulism through the inhibition of neurotransmitter release by cleaving essential SNARE proteins. There are seven serologically distinctive types of BoNTs and many subtypes within a serotype have been identified. BoNT/A5 is a recently discovered subtype of type A botulinum neurotoxin which possesses a very high degree of sequence similarity and identity to the well-studied A1 subtype. In the present study, we examined the endopeptidase activity of these two BoNT/A subtypes and our results revealed significant differences in substrate binding and cleavage efficiency between subtype A5 and A1. Distinctive hydrolysis efficiency was observed between the two toxins during cleavage of the native substrate SNAP-25 versus a shortened peptide mimic. N-terminal truncation studies demonstrated that a key region of the SNAP-25, including the amino acid residues at 151 through 154 located in the remote binding region of the substrate, contributed to the differential catalytic properties between A1 and A5. Elevated binding affinity of the peptide substrate resulted from including these important residues and enhanced BoNT/A5's hydrolysis efficiency. In addition, mutations of these amino acid residues affect the proteolytic performance of the two toxins in different ways. This study provides a better understanding of the biological activity of these toxins, their performance characteristics in the Endopep-MS assay to detect BoNT in clinical samples and foods, and is useful for the development of peptide substrates.


Assuntos
Toxinas Botulínicas Tipo A/química , Clostridium botulinum/enzimologia , Proteína 25 Associada a Sinaptossoma/química , Toxinas Botulínicas Tipo A/genética , Catálise , Hidrólise , Mutação , Ligação Proteica , Proteína 25 Associada a Sinaptossoma/genética
13.
Anal Chem ; 86(7): 3254-62, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24605815

RESUMO

Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.


Assuntos
Toxinas Botulínicas/farmacologia , Enzimas/metabolismo , Neurotoxinas/farmacologia , Sequência de Aminoácidos , Toxinas Botulínicas/química , Toxinas Botulínicas/classificação , Espectrometria de Massas , Dados de Sequência Molecular , Neurotoxinas/química , Neurotoxinas/classificação , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/farmacologia , Proteômica , Homologia de Sequência de Aminoácidos
14.
Anal Chem ; 86(21): 10847-54, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25285509

RESUMO

In this publication, we report on the development of a quantitative enzymatic method for the detection of four botulinum neurotoxin (BoNT) serotypes responsible for human botulism by MALDI-TOF mass spectrometry. Factors that might affect the linearity and dynamic range for detection of BoNT cleavage products were initially examined, including the amount of peptide substrate and internal standard, the timing of cleavage reaction, and the components in the reaction solution. It was found that a long incubation time produced sensitive results, but was not capable of determining higher toxin concentrations, whereas a short incubation time was less sensitive so that lower toxin concentrations were not detected. In order to overcome these limitations, a two-stage analysis strategy was applied. The first stage analysis involved a short incubation period (e.g., 30 min). If no toxin was detected at this stage, the cleavage reaction was allowed to continue and the samples were analyzed at a second time point (4 h), so that toxin levels lower than 1 mouse LD50 or 55 attomoles per milliliter (55 amol/mL) could be quantified. By combining the results from two-stage quantification, 4 or 5 orders of magnitude in dynamic range were achieved for the detection of the serotypes of BoNT/A, BoNT/B, BoNT/E, or BoNT/F. The effect of multiplexing the assay by mixing substrates for different BoNT serotypes into a single reaction was also investigated in order to reduce the numbers of the cleavage reactions and save valuable clinical samples.


Assuntos
Toxinas Botulínicas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Toxinas Botulínicas/classificação
15.
Appl Environ Microbiol ; 80(10): 3250-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24632257

RESUMO

Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.


Assuntos
Toxinas Botulínicas/biossíntese , Clostridium botulinum/metabolismo , Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Clostridium botulinum/classificação , Clostridium botulinum/genética , Espectrometria de Massas , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo
16.
Anal Bioanal Chem ; 406(28): 7149-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25228079

RESUMO

Botulinum neurotoxins (BoNTs) are highly toxic proteases produced by anaerobic bacteria. Traditionally, a mouse bioassay (MBA) has been used for detection of BoNTs, but for a long time, laboratories have worked with alternative methods for their detection. One of the most promising in vitro methods is a combination of an enzymatic and mass spectrometric assay called Endopep-MS. However, no comprehensive validation of the method has been presented. The main purpose of this work was to perform a validation for the qualitative analysis of BoNT-A, B, C, C/D, D, D/C, and F in serum. The limit of detection (LOD), selectivity, precision, stability in matrix and solution, and correlation with the MBA were evaluated. The LOD was equal to or even better than that of the MBA for BoNT-A, B, D/C, E, and F. Furthermore, Endopep-MS was for the first time successfully used to differentiate between BoNT-C and D and their mosaics C/D and D/C by different combinations of antibodies and target peptides. In addition, sequential antibody capture was presented as a new way to multiplex the method when only a small sample volume is available. In the comparison with the MBA, all the samples analyzed were positive for BoNT-C/D with both methods. These results indicate that the Endopep-MS method is a valid alternative to the MBA as the gold standard for BoNT detection based on its sensitivity, selectivity, and speed and that it does not require experimental animals.


Assuntos
Bioensaio/métodos , Toxinas Botulínicas/sangue , Endopeptidases/metabolismo , Fragmentos de Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Galinhas , Humanos , Camundongos
17.
Anal Biochem ; 432(2): 115-23, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23017875

RESUMO

Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to humans. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype-specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep-MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype-specific antibodies and detecting the unique and serotype-specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep-MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity 5-fold with toxin spiked into buffer solution or different biological matrices.


Assuntos
Toxinas Botulínicas Tipo A/análise , Endopeptidases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Acetilação , Sequência de Aminoácidos , Toxinas Botulínicas Tipo A/imunologia , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/metabolismo , Imunoglobulina G/imunologia , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato
19.
Rev Anal Chem ; 32(3): 189-196, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26316676

RESUMO

Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A-G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence and immunogenic properties, and some subtypes are further differentiated into toxin variants. Toxin characterization is important as different types of BoNT can respond differently to medical countermeasures for botulism, and characterization of the toxin can aid in epidemiologic and forensic investigations. Proteomic techniques have been established to determine the serotype, subtype, or toxin variant of BoNT. These techniques involve digestion of the toxin into peptides, tandem mass spectrometric (MS/MS) analysis of the peptides, and database searching to identify the BoNT protein. These techniques demonstrate the capability to detect BoNT and its neurotoxin-associated proteins, and differentiate the toxin from other toxins which are up to 99.9% identical in some cases. This differentiation can be accomplished from toxins present in a complex matrix such as stool, food, or bacterial cultures and no DNA is required.

20.
Anal Chem ; 84(11): 4652-8, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22577857

RESUMO

Botulinum neurotoxin (BoNT) is one of the most toxic substances known. BoNT is classified into seven distinct serotypes labeled A-G. Among individual serotypes, researchers have identified subtypes based on amino acid variability within a serotype and toxin variants with minor amino acid sequence differences within a subtype. BoNT subtype identification is valuable for tracing and tracking bacterial pathogens. A proteomics approach is useful for BoNT subtyping since botulism is caused by botulinum neurotoxin and does not require the presence of the bacteria or its DNA. Enzymatic digestion and peptide identification using tandem mass spectrometry determines toxin protein sequences. However, with the conventional one-step digestion method, producing sufficient numbers of detectable peptides to cover the entire protein sequence is difficult, and incomplete sequence coverage results in uncertainty in distinguishing BoNT subtypes and toxin variants because of high sequence similarity. We report here a method of multiple enzymes and sequential in-gel digestion (MESID) to characterize the BoNT protein sequence. Complementary peptide detection from toxin digestions has yielded near-complete sequence coverage for all seven BoNT serotypes. Application of the method to a BoNT-contaminated carrot juice sample resulted in the identification of 98.4% protein sequence which led to a confident determination of the toxin subtype.


Assuntos
Toxinas Botulínicas/isolamento & purificação , Clostridium botulinum/química , Endopeptidases/química , Tipagem Molecular/métodos , Neurotoxinas/isolamento & purificação , Sequência de Aminoácidos , Toxinas Botulínicas/química , Toxinas Botulínicas/classificação , Cromatografia Líquida , Endopeptidases/metabolismo , Géis , Guanidina/química , Dados de Sequência Molecular , Neurotoxinas/química , Neurotoxinas/classificação , Proteômica , Alinhamento de Sequência , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA