RESUMO
BACKGROUND: Congenital disorders of glycosylation (CDGs) are genetic diseases caused by gene defects in glycan biosynthesis pathways, and there is an increasing number of patients diagnosed with CDGs. Because CDGs show many different clinical symptoms, their accurate clinical diagnosis is challenging. Recently, we have shown that liposome nanoparticles bearing the ALG1-CDG and PMM2-CDG biomarkers (a tetrasaccharide: Neu5Ac-α2,6-Gal-ß1,4-GlcNAc-ß1,4-GlcNAc) stimulate a moderate immune response, while the generated antibodies show relatively weak affinity maturation. Thus, mature antibodies with class switching to IgG are desired to develop high-affinity antibodies that may be applied in medical applications. RESULTS: In the present study, a liposome-based vaccine platform carrying a chemoenzymatic synthesized phytanyl-linked tetrasaccharide biomarker was optimized. The liposome nanoparticles were constructed by dioleoylphosphatidylcholine (DOPC) to improve the stability and immunogenicity of the vaccine, and adjuvanted with the NKT cell agonist PBS57 to generate high level of IgG antibodies. The results indicated that the reformulated liposomal vaccine stimulated a stronger immune response, and PBS57 successfully induce an antibody class switch to IgG. Further analyses of IgG antibodies elicited by liposome vaccines suggested their specific binding to tetrasaccharide biomarkers, which were mainly IgG2b isotypes. CONCLUSIONS: Immunization with a liposome vaccine carrying a carbohydrate antigen and PBS57 stimulates high titers of CDG biomarker-specific IgG antibodies, thereby showing great potential as a platform to develop rapid diagnostic methods for ALG1-CDG and PMM2-CDG.
Assuntos
Células T Matadoras Naturais , Vacinas , Humanos , Lipossomos , Switching de Imunoglobulina , Células T Matadoras Naturais/metabolismo , Oligossacarídeos , Adjuvantes Imunológicos , Biomarcadores/metabolismo , Imunoglobulina G , ImunidadeRESUMO
Congenital disorders of glycosylation (CDG) are a growing group diseases that result from defects in genes involved in glycan biosynthesis pathways. One tetrasaccharide, i.e., Neu5Ac-α2, 6-Gal-ß1, 4-GlcNAc-ß1, 4-GlcNAc, was recently reported as the biomarker of ALG1-CDG, the disease caused by ALG1 deficiency. To develop a novel diagnostic method for ALG1-CDG, chemo-enzymatic synthesis of the tetrasaccharide biomarker linked to phytanyl phosphate and the biomarker's immune stimulation were investigated in this study. The immunization study using liposomes bearing phytanyl-linked tetrasaccharide revealed that they stimulated a moderate immune response. The induced antibody showed strong binding specificity for the ALG1-CDG biomarker, indicating its potential in medical applications.