Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 36(26): 7573-7581, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32501715

RESUMO

Polyethylene glycol (PEG) coatings have been widely applied in pharmaceutical and biomedical systems to prevent nonspecific protein absorption, increase vesicle blood circulation time, and sustain drug release. This study systematically investigated the planar interfacial organization of phospholipid monolayers containing various amounts of PEG conjugations before and after enzyme-catalyzed degradation of the lipids using X-ray reflectivity and grazing incidence X-ray diffraction techniques. Results showed that attaching PEG to the headgroup of the lipids up to 15 mol % had limited effects on molecular packing of the lipid monolayers in the condensed phase at the gas-liquid interface and negligible effects on the enzyme adsorption to the interface. After enzyme-catalyzed degradation, equimolar fatty acids and lyso PC were generated. The fatty acids together with the subphase Ca2+ self-assembled into highly organized multilayer domains at the interface. The X-ray measurements unambiguously revealed that the densely packed PEG markedly hindered microphase separation and formation of the palmitic acid-Ca2+ complexes.

2.
Langmuir ; 35(36): 11643-11650, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31401834

RESUMO

To optimize the compositions of the lipid-based nanomedicine and to advance understanding of the roles of polyunsaturated phospholipids in biological membranes, this study examined the effects of polyunsaturated phospholipids on the degradation of giant unilamellar vesicles catalyzed by a secreted phospholipase A2 (sPLA2) using fluorescence microscopy. Molecular interfacial packing, interaction, and degradation of the films containing various mixing ratios of saturated and polyunsaturated phospholipids were quantified using a Langmuir trough integrated with synchrotron X-ray surface scattering techniques. It was found that a high molar fraction (0.63 and above) of polyunsaturated phospholipids not only enhanced the rate of sPLA2-catalyzed vesicle degradation but also changed the vesicle deformation process and degradation product morphology. Hydrolysis of the saturated phospholipids generated highly ordered liquid crystal domains, which was reduced or prohibited by the presence of the polyunsaturated phospholipids in the reactant film.


Assuntos
Fosfolipases A2/metabolismo , Fosfolipídeos/metabolismo , Lipossomas Unilamelares/metabolismo , Animais , Venenos de Abelha/enzimologia , Abelhas , Biocatálise , Tamanho da Partícula , Fosfolipases A2/química , Fosfolipídeos/química , Propriedades de Superfície , Lipossomas Unilamelares/química
3.
Soft Matter ; 15(20): 4068-4077, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30958491

RESUMO

The intrinsic overexpression of secretory phospholipase A2 (sPLA2) in various pro-inflammatory diseases and cancers has the potential to be exploited as a therapeutic strategy for diagnostics and treatment. To explore this potential and advance our knowledge of the role of sPLA2 in related diseases, it is necessary to systematically investigate the molecular interaction of the enzyme with lipids. By employing a Langmuir trough integrated with X-ray reflectivity and grazing incidence X-ray diffraction techniques, this study examined the molecular packing structure of 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) films before and after enzyme adsorption and enzyme-catalyzed degradation. Molecular interaction of sPLA2 (from bee venom) with the DPPC monolayer exhibited Ca2+ dependence. DPPC molecules at the interface without Ca2+ retained a monolayer organization; upon adsorption of sPLA2 to the monolayer the packing became tighter. In contrast, sPLA2-catalyzed degradation of DPPC occurred in the presence of Ca2+, leading to disruption of the ordered monolayer structure of DPPC. The interfacial film became a mixture of highly ordered multilayer domains of palmitic acid (PA) and loosely packed monolayer phase of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPC) that potentially contained the remaining un-degraded DPPC. The redistribution of lipid degradation products into the third dimension, which produced multilayer PA domains, damaged the structural integrity of the original lipid layer and may explain the bursting of liposomes observed in other studies after a latency period of mixing liposomes with sPLA2. A quantitative understanding of the lipid packing and lipid-enzyme interaction provides an intuitive means of designing and optimizing lipid-related drug delivery systems.


Assuntos
Bicamadas Lipídicas/química , Lisofosfatidilcolinas/química , Fosfolipases A2 Secretórias/química , Adsorção , Cálcio/química , Cátions Bivalentes/química , Lipossomos , Propriedades de Superfície
4.
Bioconjug Chem ; 27(1): 102-9, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26624923

RESUMO

Platelet-sized polyphosphate (polyP) was functionalized on the surface of gold nanoparticles (GNPs) via a facile conjugation scheme entailing EDAC (N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride)-catalyzed phosphoramidation of the terminal phosphate of polyP to cystamine. Subsequent reduction of the disulfide moiety allowed for anchoring to the colloidal surface. The ability of the synthesized polyP-GNPs to initiate the contact pathway of clotting in human pooled normal plasma (PNP) was then assayed by quantifying changes in viscous, mechanical, and optical properties upon coagulation. It is revealed that the polyP-GNPs are markedly superior contact activators compared to molecularly dissolved, platelet-sized polyP (of equivalent polymer chain length). Moreover, the particles' capacity to mobilize Factor XII (FXII) and its coactivating proteins appear to be identical to very-long-chain polyP typically found in bacteria. These data imply that nanolocalization of anionic procoagulants on colloidal surfaces, achieved through covalent anchoring, may yield a robust contact surface with the ability to sufficiently cluster active clotting factors together above their threshold concentrations to cease bleeding. The polyP-GNPs therefore serve as a promising foundation in the development of a nanoparticle hemostat to treat a range of hemorrhagic scenarios.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Coagulantes/farmacologia , Nanopartículas Metálicas/química , Polifosfatos/farmacologia , Técnicas de Química Sintética , Coloides/química , Cistamina/química , Fator XII/metabolismo , Ouro/química , Ouro/farmacologia , Humanos , Polifosfatos/química
5.
Biomacromolecules ; 17(8): 2572-81, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27405511

RESUMO

Granular platelet-sized polyphosphate nanoparticles (polyP NPs) were encapsulated in sterically stabilized liposomes, forming a potential, targeted procoagulant nanotherapy resembling human platelet dense granules in both structure and functionality. Dynamic light scattering (DLS) measurements reveal that artificial dense granules (ADGs) are colloidally stable and that the granular polyP NPs are encapsulated at high efficiencies. High-resolution scanning transmission electron microscopy (HR-STEM) indicates that the ADGs are monodisperse particles with a 150 nm diameter dense core consisting of P, Ca, and O surrounded by a corrugated 25 nm thick shell containing P, C, and O. Further, the ADGs manifest promising procoagulant activity: Detergent solubilization by Tween 20 or digestion of the lipid envelope by phospholipase C (PLC) allows for ADGs to trigger autoactivation of Factor XII (FXII), the first proteolytic step in the activation of the contact pathway of clotting. Moreover, ADGs' ability to reduce the clotting time of human plasma in the presence of PLC further demonstrate the feasibility to develop ADGs into a potential procoagulant nanomedicine.


Assuntos
Materiais Biocompatíveis/metabolismo , Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Lipossomos/química , Polifosfatos/metabolismo , Materiais Biocompatíveis/química , Testes de Coagulação Sanguínea , Grânulos Citoplasmáticos/química , Composição de Medicamentos , Humanos
6.
Biomacromolecules ; 15(11): 3976-84, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25268994

RESUMO

Size-controlled granular polyphosphate (PolyP) nanoparticles were synthesized by precipitation in aqueous solutions containing physiological concentrations of calcium and magnesium. We demonstrate using dynamic light scattering (DLS) that the solubility is correlated inversely with PolyP chain length, with very long chain PolyP (PolyP1000+, more than 1000 repeating units) normally found in prokaryotes precipitating much more robustly than shorter chains like those found in human platelet dense granules (PolyP80, range 76-84 repeating units). It is believed that the precipitation of PolyP is a reversible process involving calcium coordination to phosphate monomers in the polymer chain. The particles are stable in aqueous buffer and albumin suspensions on time scales roughly equivalent to catastrophic bleeding events. Transmission electron microscopy images demonstrate that the PolyP nanoparticles are spherical and uniformly electron dense, with a particle diameter of 200-250 nm, closely resembling the content of acidocalcisomes. X-ray elemental analysis further reveals that the P/Ca ratio is 67:32. The granular nanoparticles also manifest promising procoagulant effects, as measured by in vitro clotting tests assaying contact pathway activity.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Cloreto de Cálcio/química , Cloreto de Magnésio/química , Nanopartículas/química , Tamanho da Partícula , Polifosfatos/síntese química , Coagulação Sanguínea/fisiologia , Humanos , Polifosfatos/farmacologia
7.
Int J Pharm ; 665: 124656, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245087

RESUMO

Conventional solid oral dosage form development is not typically challenged by reliance on an amorphous drug substance as a direct ingredient in the drug product, as this may result in product development hurdles arising from process design and scale-up, control of physical quality attributes, drug product processability and stability. Here, we present the Chemistry, Manufacturing and Controls development journey behind the successful commercialization of an amorphous drug substance, Elagolix Sodium, a first-in-class, orally active gonadotropin-releasing hormone antagonist. The reason behind the lack of crystalline state was assessed via Molecular Dynamics (MD) at the molecular and inter-molecular level, revealing barriers for nucleation due to prevalence of intra-molecular hydrogen bond, repulsive interactions between active pharmaceutical ingredient (API) molecules and strong solvation effects. To provide a foundational basis for the design of the API manufacturing process, we modeled the solvent-induced plasticization behavior experimentally and computationally via MD for insights into molecular mobility. In addition, we applied material science tetrahedron concepts to link API porosity to drug product tablet compressibility. Finally, we designed the API isolation process, incorporating computational fluid dynamics modeling in the design of an impinging jet mixer for precipitation and solvent-dependent glass transition relationships in the cake wash, blow-down and drying process, to enable the consistent manufacture of a porous, non-sintered amorphous API powder that is suitable for robust drug product manufacturing.

8.
Macromolecules ; 52(9): 3151-3157, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31588150

RESUMO

Utilizing synchrotron small-angle X-ray scattering (SAXS) integrated with a microfluidic device, micellization kinetics of a diblock co-polymer, poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL) was measured in situ with millisecond temporal and micrometer spatial resolution. The evolutionary regimes of polymer micellization - nucleation, fusion, and insertion were directly observed. The five-inlet microfluidic device provided steady continuous mixing of the polymer solution and the antisolvent. Solvent replacement was mainly dominated by lateral diffusion across the hydrodynamically focused central layer, whose thickness could be precisely designed and manipulated from mass balance of the partitioning streams. Knowing the micellization kinetics of the polymers is essential for design and optimization of self-assembled polymeric nanostructures. The technique of integrating SAXS with microfluidic devices can be translatable to other systems for a breadth of applications.

9.
ACS Macro Lett ; 6(9): 1005-1012, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29308298

RESUMO

A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core-shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core-shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA