Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Semin Immunol ; 61-64: 101664, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306664

RESUMO

Inflammatory bowel diseases (IBD) such as Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic, progressive, and relapsing disorders of the gastrointestinal tract (GIT), characterised by intestinal epithelial injury and inflammation. Current research shows that in addition to traditional anti-inflammatory therapy, resolution of inflammation and repair of the epithelial barrier are key biological requirements in combating IBD. Resolution mediators include endogenous lipids that are generated during inflammation, e.g., lipoxins, resolvins, protectins, maresins; and proteins such as Annexin A1 (ANXA1). Nanoparticles can specifically deliver these potent inflammation resolving mediators in a spatiotemporal manner to IBD lesions, effectively resolve inflammation, and promote a return to homoeostasis with minimal collateral damage. We discuss these exciting and timely concepts in this review.


Assuntos
Anexina A1 , Doenças Inflamatórias Intestinais , Lipoxinas , Humanos , Anexina A1/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mediadores da Inflamação/metabolismo
2.
Biomacromolecules ; 22(2): 386-398, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33125232

RESUMO

A key initiating step in atherosclerosis is the accumulation and retention of apolipoprotein B complexing lipoproteins within the artery walls. In this work, we address this exact initiating mechanism of atherosclerosis, which results from the oxidation of low-density lipoproteins (oxLDL) using therapeutic nanogels. We present the development of biocompatible polyethylene glycol (PEG) cross-linked nanogels formed from a single simultaneous cross-linking and co-polymerization step in water without the requirement for an organic solvent, high temperature, or shear stress. The nanogel synthesis also incorporates in situ noncovalent electrostatically driven template polymerization around an innate anti-inflammatory and anti-oxidizing paraoxonase-1 (PON-1) enzyme payload-the release of which is triggered because of matrix metalloproteinase responsive elements instilled in the PEG cross-linker monomer. The results obtained demonstrate the potential of triggered release of the PON-1 enzyme and its efficacy against the production of ox-LDL, and therefore a reduction in macrophage foam cell and reactive oxygen species formation.


Assuntos
Lipoproteínas LDL , Polietilenoglicóis , Nanogéis , Polimerização , Água
3.
Curr Opin Organ Transplant ; 23(1): 8-14, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29176361

RESUMO

PURPOSE OF REVIEW: Organ transplantation is a life-saving procedure and the only option for patients with end-organ failure. Immune therapeutics have been key to the success of organ transplantation. However, immune therapeutics are still unable to eliminate graft rejection and their toxicity has been implicated in poorer long-term transplant outcomes. Targeted nanodelivery has the potential to enhance not only the therapeutic index but also the bioavailability of the immune therapeutics. One of the key sites of immune therapeutics delivery is lymph node where the priming of immune cells occur. The focus of this review is on nanomedicine research to develop the targeted delivery of immune therapeutics to lymph nodes for controlling immune activation. RECENT FINDINGS: As nanomedicine creates its niche in clinical care, it provides novel immunotherapy platforms for transplant recipients. Draining lymph nodes are the primary loci of immune activation and represent a formidable site for delivery of wide variety of immune therapeutics. There have been relentless efforts to improve the properties of nanomedicines, to have in-depth knowledge of antigen and drug loading, and, finally, to explore various routes of passive and active targeted delivery to lymph nodes. SUMMARY: The application of nanotechnology principles in the delivery of immune therapeutics to the lymph node has created enormous excitement as a paradigm shifting approach that enables targeted delivery of a gamut of molecules to achieve a desired immune response. Therefore, innovative strategies that improve their efficacy while reducing their toxicity are among the highest unmet needs in transplantation.


Assuntos
Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Fatores Imunológicos/imunologia , Linfonodos/imunologia , Nanomedicina , Animais , Humanos
4.
Proc Natl Acad Sci U S A ; 111(28): 10287-92, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982170

RESUMO

Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(D,L-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo biodistribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM.


Assuntos
Antineoplásicos , Neoplasias Ósseas/tratamento farmacológico , Ácidos Borônicos , Sistemas de Liberação de Medicamentos , Ácido Láctico , Mieloma Múltiplo/tratamento farmacológico , Nanopartículas , Polietilenoglicóis , Ácido Poliglicólico , Pirazinas , Microambiente Tumoral/efeitos dos fármacos , Alendronato/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Ácido Láctico/síntese química , Ácido Láctico/química , Ácido Láctico/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Nanopartículas/química , Nanopartículas/ultraestrutura , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Ácido Poliglicólico/síntese química , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pirazinas/química , Pirazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Natl Acad Sci U S A ; 110(16): 6506-11, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23533277

RESUMO

Excessive inflammation and failed resolution of the inflammatory response are underlying components of numerous conditions such as arthritis, cardiovascular disease, and cancer. Hence, therapeutics that dampen inflammation and enhance resolution are of considerable interest. In this study, we demonstrate the proresolving activity of sub-100-nm nanoparticles (NPs) containing the anti-inflammatory peptide Ac2-26, an annexin A1/lipocortin 1-mimetic peptide. These NPs were engineered using biodegradable diblock poly(lactic-co-glycolic acid)-b-polyethyleneglycol and poly(lactic-co-glycolic acid)-b-polyethyleneglycol collagen IV-targeted polymers. Using a self-limited zymosan-induced peritonitis model, we show that the Ac2-26 NPs (100 ng per mouse) were significantly more potent than Ac2-26 native peptide at limiting recruitment of polymononuclear neutrophils (56% vs. 30%) and at decreasing the resolution interval up to 4 h. Moreover, systemic administration of collagen IV targeted Ac2-26 NPs (in as low as 1 µg peptide per mouse) was shown to significantly block tissue damage in hind-limb ischemia-reperfusion injury by up to 30% in comparison with controls. Together, these findings demonstrate that Ac2-26 NPs are proresolving in vivo and raise the prospect of their use in chronic inflammatory diseases such as atherosclerosis.


Assuntos
Anexina A1/farmacologia , Anexina A1/uso terapêutico , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Neutrófilos/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peritonite/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Análise de Variância , Animais , Colágeno Tipo IV/metabolismo , Feminino , Citometria de Fluxo , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL
6.
Nano Lett ; 14(11): 6449-55, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25333768

RESUMO

Protein therapeutics have gained attention recently for treatment of a myriad of human diseases due to their high potency and unique mechanisms of action. We present the development of a novel polymeric thermosponge nanoparticle for efficient delivery of labile proteins using a solvent-free polymer thermo-expansion mechanism with clinical potential, capable of effectively delivering a range of therapeutic proteins in a sustained manner with no loss of bioactivity, with improved biological half-lives and efficacy in vivo.


Assuntos
Anti-Inflamatórios/administração & dosagem , Preparações de Ação Retardada/química , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Interleucina-10/administração & dosagem , Nanopartículas/química , Polímeros/química , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Linhagem Celular , Sistemas de Liberação de Medicamentos , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Insulina/farmacocinética , Insulina/farmacologia , Interleucina-10/farmacocinética , Interleucina-10/farmacologia , Camundongos , Nanopartículas/ultraestrutura , Temperatura
7.
Angew Chem Int Ed Engl ; 53(36): 9550-4, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25045009

RESUMO

MRI offers high spatial resolution with excellent tissue penetration but it has limited sensitivity and the commonly administered contrast agents lack specificity. In this study, two sets of iron oxide nanoparticles (IONPs) were synthesized that were designed to selectively undergo copper-free click conjugation upon sensing of matrix metalloproteinase (MMP) enzymes, thereby leading to a self-assembled superparamagnetic nanocluster network with T2 signal enhancement properties. For this purpose, IONPs with bioorthogonal azide and alkyne surfaces masked by polyethylene glycol (PEG) layers tethered to CXCR4-targeted peptide ligands were synthesized and characterized. The IONPs were tested in vitro and T2 signal enhancements of around 160 % were measured when the IONPs were incubated with cells expressing MMP2/9 and CXCR4. Simultaneous systemic administration of the bioorthogonal IONPs in tumor-bearing mice demonstrated the signal-enhancing ability of these 'smart' self-assembling nanomaterials.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Metaloproteinases da Matriz/efeitos dos fármacos , Receptores CXCR4/efeitos dos fármacos , Alcinos/química , Animais , Azidas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/patologia
8.
Angew Chem Int Ed Engl ; 53(34): 8975-9, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24990548

RESUMO

One limitation of current biodegradable polymeric nanoparticles is their inability to effectively encapsulate and sustainably release proteins while maintaining protein bioactivity. Here we report the engineering of PLGA-polycation nanoparticles with a core-shell structure that act as a robust vector for the encapsulation and delivery of proteins and peptides. The optimized nanoparticles can load high amounts of proteins (>20 % of nanoparticles by weight) in aqueous solution without organic solvents through electrostatic interactions by simple mixing, thereby forming nanospheres in seconds with diameters <200 nm. The relationship between nanosphere size, surface charge, PLGA-polycation composition, and protein loading is also investigated. The stable nanosphere complexes contain multiple PLGA-polycation nanoparticles, surrounded by large amounts of protein. This study highlights a novel strategy for the delivery of proteins and other relevant molecules.


Assuntos
Nanopartículas , Polímeros/química , Proteínas/química , Microscopia Eletrônica de Transmissão
10.
Chem Soc Rev ; 41(7): 2971-3010, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22388185

RESUMO

Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/química , Humanos
11.
Nanomedicine (Lond) ; 18(1): 67-84, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36896958

RESUMO

Nanomedicines are revolutionizing healthcare as recently demonstrated by the Pfizer/BioNTech and Moderna COVID-2019 vaccines, with billions of doses administered worldwide in a safe manner. Nonalcoholic fatty liver disease is the most common noncommunicable chronic liver disease, posing a major growing challenge to global public health. However, due to unmet diagnostic and therapeutic needs, there is great interest in the development of novel translational approaches. Nanoparticle-based approaches offer novel opportunities for efficient and specific drug delivery to liver cells, as a step toward precision medicines. In this review, the authors highlight recent advances in nanomedicines for the generation of novel diagnostic and therapeutic tools for nonalcoholic fatty liver disease and related liver diseases.


Chronic liver diseases are a growing concern for global public health since they can affect up to 25% of the global adult population. Currently, there is no effective treatment or cure for these diseases. Nanometer-sized capsules can be loaded with drugs and more accurately deliver these drugs to their sites of action. They help improve the availability of medicines to the liver and have the potential to reduce their side effects. Here, the authors discuss recent advances to explain how nanotechnology can help improve the benefits of existing medicines for liver disease therapy.


Assuntos
COVID-19 , Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Nanomedicina , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico
12.
Acc Chem Res ; 44(10): 1123-34, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21692448

RESUMO

Nanoparticles (NPs) have become an important tool in many industries including healthcare. The use of NPs for drug delivery and imaging has introduced exciting opportunities for the improvement of disease diagnosis and treatment. Over the past two decades, several first-generation therapeutic NP products have entered the market. Despite the lack of controlled release and molecular targeting properties in these products, they improved the therapeutic benefit of clinically validated drugs by enhancing drug tolerability and/or efficacy. NP-based imaging agents have also improved the sensitivity and specificity of different diagnostic modalities. The introduction of controlled-release properties and targeting ligands toward the development of next-generation NPs should enable the development of safer and more effective therapeutic NPs and facilitate their application in theranostic nanomedicine. Targeted and controlled-release NPs can drastically alter the pharmacological characteristics of their payload, including their pharmacokinetic and, in some cases, their pharmacodynamic properties. As a result, these NPs can improve drug properties beyond what can be achieved through classic medicinal chemistry. Despite their enormous potential, the translation of targeted NPs into clinical development has faced considerable challenges. One significant problem has been the difficulty in developing targeted NPs with optimal biophysicochemical properties while using robust processes that facilitate scale-up and manufacturing. Recently, efforts have focused on developing NPs through self-assembly or high-throughput processes to facilitate the development and screening of NPs with these distinct properties and the subsequent scale-up of their manufacture. We have also undertaken parallel efforts to integrate additional functionality within therapeutic and imaging NPs, including the ability to carry more than one payload, to respond to environmental triggers, and to provide real-time feedback. In addition, novel targeting approaches are being developed to enhance the tissue-, cell-, or subcellular-specific delivery of NPs for a myriad of important diseases. These include the selection of internalizing ligands for enhanced receptor-mediated NP uptake and the development of extracellular targeting ligands for vascular tissue accumulation of NPs. In this Account, we primarily review the evolution of marketed NP technologies. We also recount our efforts in the design and optimization of NPs for medical applications, which formed the foundation for the clinical translation of the first-in-man targeted and controlled-release NPs (BIND-014) for cancer therapy.


Assuntos
Nanomedicina/métodos , Nanopartículas/química , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Terapia de Alvo Molecular , Nanomedicina/instrumentação , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
13.
Nanoscale ; 14(5): 1606-1620, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35076049

RESUMO

Nanoparticles exposed to biological fluids such as blood, quickly interact with their surrounding milieu resulting in a biological coating that results in large part as a function of the physicochemical properties of the nanomaterial. The large nanoparticle surface area-to-volume ratio further augments binding of biological molecules and the resulting biomolecular or protein corona, once thought of as problematic biofouling, is now viewed as a rich source of biological information that can guide the development of nanomedicines. This review gives an overview of the utility of the protein corona in proteomic profiling and discusses how a better understanding of nano-bio interactions can accelerate the clinical translation of nanomedicines and facilitate the identification of disease-specific biomarkers. With the FDA requirement of the protein corona analysis of nanoparticles in place, it is envisaged that analyzing the protein corona of nanoparticles on a case-by-case basis can provide highly valuable nano-bio interface information that can aid and improve their clinical translation.


Assuntos
Nanopartículas , Coroa de Proteína , Biomarcadores , Nanomedicina , Proteômica
14.
Interface Focus ; 12(1): 20210006, 2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-34956607

RESUMO

Coronavirus disease 2019 (COVID-19) is a deadly respiratory disease caused by severe acute respiratory syndrome coronavirus 2, which has caused a global pandemic since early 2020 and severely threatened people's livelihoods and health. Patients with pre-diagnosed conditions admitted to hospital often develop complications leading to mortality due to acute respiratory distress syndrome (ARDS) and associated multiorgan failure and blood clots. ARDS is associated with a cytokine storm. Cytokine storms arise due to elevated levels of circulating cytokines and are associated with infections. Targeting various pro-inflammatory cytokines in a specific manner can result in a potent therapeutic approach with minimal host collateral damage. Immunoregulatory therapies are now of interest in order to regulate the cytokine storm, and this review will summarize and discuss advances in targeted therapies against cytokine storms induced by COVID-19.

15.
Nanoscale Adv ; 4(3): 742-753, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131819

RESUMO

Atherosclerosis is a leading cause of death worldwide. Antioxidant therapy has been considered a promising treatment modality for atherosclerosis, since reactive oxygen species (ROS) play a major role in the pathogenesis of atherosclerosis. We developed ROS-scavenging antioxidant nanoparticles (NPs) that can serve as an effective therapy for atherosclerosis. The newly developed novel antioxidant ROS-eliminating NPs were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and act as a superoxide dismutase (SOD) mimetic agent. SOD is an anti-ROS enzyme which is difficult to use for passive delivery due to its low half-life and stability. Copolymers were synthesized using different feed ratios of 2,2,6,6-tetramethyl-4-piperidyl methacrylate (PMA) and glycidyl methacrylate (GMA) monomers and an anti-ROS nitroxyl radical polymer was prepared via oxidation. The copolymer was further conjugated with a 6-aminofluorescein via a oxirane ring opening reaction for intracellular delivery in RAW 264.7 cells. The synthesized copolymers were blended to create NPs (∼150 nm size) in aqueous medium and highly stable up to three weeks. The NPs were shown to be taken up by macrophages and to be cytocompatible even at high dose levels (500 µg mL-1). Finally, the nitroxide NPs has been shown to inhibit foam cell formation in macrophages by decreasing internalization of oxidized low-density lipoproteins.

16.
Biomater Biosyst ; 6: 100047, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36824160

RESUMO

In the diabetic kidneys, morbidities such as accelerated ageing, hypertension and hyperglycaemia create a pro-inflammatory microenvironment characterised by extensive fibrogenesis. Radiological techniques are not yet optimised generating inconsistent and non-reproducible data. The gold standard procedure to assess renal fibrosis is kidney biopsy, followed by histopathological assessment. However, this method is risky, invasive, subjective and examines less than 0.01% of kidney tissue resulting in diagnostic errors. As such, less than 10% of patients undergo kidney biopsy, limiting the accuracy of the current diabetic kidney disease (DKD) staging method. Standard treatments suppress the renin-angiotensin system to control hypertension and use of pharmaceuticals aimed at controlling diabetes have shown promise but can cause hypoglycaemia, diuresis and malnutrition as a result of low caloric intake. New approaches to both diagnosis and treatment are required. Nanoparticles (NPs) are an attractive candidate for managing DKD due to their ability to act as theranostic tools that can carry drugs and enhance image contrast. NP-based point-of-care systems can provide physiological information previously considered unattainable and provide control over the rate and location of drug release. Here we discuss the use of nanotechnology in renal disease, its application to both the treatment and diagnosis of DKD. Finally, we propose a new method of NP-based DKD classification that overcomes the current systems limitations.

17.
Bioconjug Chem ; 22(5): 879-86, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21410265

RESUMO

Colchicine, a known tubulin binding agent and vascular disrupting agent, causes rapid vascular shut down and central necrosis in tumors. The binding of tubulin results in tubulin destabilization, with characteristic cell shape changes and inhibition of cell division, and results in cell death. A gadolinium(III) labeled derivative of colchicine (Gd·DOTA·Colchicinic acid) was synthesized and characterized as a theranostic agent (enabling simultaneous diagnostic/real time MRI contrast imaging). In vitro, Gd·DOTA·Colchicinic acid was shown to initiate cell changes characteristic of tubulin-destabilization in both OVCAR-3 and IGROV-1 ovarian carcinoma cell lines in vitro over a period of 24 h, while maintaining the qualities of the MR imaging tracer. In vivo, Gd·DOTA·Colchicinic acid (200 mg/kg) was shown to induce the formation of central necrosis, which was confirmed ex vivo by histology, in OVCAR-3 subcutaneous tumor xenografts, while simultaneously acting as an imaging agent to promote a significant reduction in the MR relaxation time T(1) (p < 0.05) of tumors 24 h post-administration. Morphological changes within the tumor which corresponded with areas derived from the formation of central necrosis were also present on MR images that were not observed for the same colchicine derivate that was not complexed with gadolinium that also presented with central necrosis ex vivo. However, Gd·DOTA·Colchicinic acid accumulation in the liver, as shown by changes in liver T(1) (p < 0.05), takes place within 2 h. The implication is that Gd·DOTA·Colchicinic acid distributes to tissues, including tumors, within 2 h, but enters tumor cells to lower T(1) times and promotes cell death over a period of up to 24 h. As the biodistribution/pharmacokinetic and pharmacodynamics data provided here is similar to that of conventional colchicines derivatives, such combined data are a potentially powerful way to rapidly characterize the complete behavior of drug candidates in vivo.


Assuntos
Colchicina/síntese química , Imageamento por Ressonância Magnética , Morte Celular/efeitos dos fármacos , Colchicina/farmacologia , Colchicina/uso terapêutico , Relação Dose-Resposta a Droga , Gadolínio/química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Conformação Molecular , Estereoisomerismo , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Inflamm Bowel Dis ; 27(9): 1379-1393, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33512505

RESUMO

BACKGROUND: Although in most patients with inflammatory bowel diseases, conservative therapy is successful, a significant proportion of patients still require surgery once in their lifetime. Development of a safe perioperative treatment to dampen colitis activity without disturbance of anastomotic healing is an urgent and unmet medical need. Annexin A1 (ANXA1) has been shown to be effective in reducing colitis activity. Herein, a nanoparticle-based perioperative treatment approach was used for analysis of the effects of ANXA1 on the resolution of inflammation after surgery for colitis. METHODS: Anxa1-knockout mice were used to delineate the effects of ANXA1 on anastomotic healing. A murine model of preoperative dextran sodium sulfate colitis was performed. Collagen-IV-targeted polymeric nanoparticles, loaded with the ANXA1 biomimetic peptide Ac2-26 (Ac2-26-NPs), were synthesized and administered perioperatively during colitis induction. The effects of the Ac2-26-NPs on postoperative recovery and anastomotic healing were evaluated using the disease activity index, histological healing scores, and weight monitoring. Ultimately, whole-genome RNA sequencing of the anastomotic tissue was performed to unravel underlying molecular mechanisms. RESULTS: Anxa1-knockout exacerbated the inflammatory response in the healing anastomosis. Treatment with Ac2-26-NPs improved preoperative colitis activity (P < 0.045), postoperative healing scores (P < 0.018), and weight recovery (P < 0.015). Whole-genome RNA sequencing revealed that the suppression of proinflammatory cytokine and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was associated with the treatment effects and a phenotypic switch toward anti-inflammatory M2 macrophages. CONCLUSIONS: Proresolving therapy with Ac2-26-NPs promises to be a potent perioperative therapy because it improves colitis activity and even intestinal anastomotic healing by the suppression of proinflammatory signaling.


Assuntos
Anexina A1 , Colite , NF-kappa B , Nanopartículas , Anastomose Cirúrgica , Animais , Anexina A1/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais
19.
Org Biomol Chem ; 8(1): 201-11, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20024151

RESUMO

We have synthesized a bimodal lipidic molecule bearing both fluorophore and contrast agent signatures on the same structure in order to create a robust bimodal liposome for both magnetic resonance imaging (MRI) and fluorescence microscopy utility. The dual-modality concept considered in the synthesis of this new paramagnetic and fluorescent lipid is valuable in that anatomical information (MRI) as well as very sensitive localization (ex vivo fluorescence microscopy) of signal, and therefore liposome biodistribution, is obtainable. Bimodal cationic and neutral PEGylated liposomes were formulated using this novel lipid probe and used to label cells in vitro and image human ovarian xenografts in vivo. Tumour signal enhancement was increased by over 6-fold post-administration of the neutral PEGylated liposomes, and was maintained at this level up to the 24 h end-point. Our results showed this lipid to be more effective and sensitive than the single signature paramagnetic lipid Gd.DOTA.DSA at cellular labelling and tumour MRI.


Assuntos
Meios de Contraste/síntese química , Corantes Fluorescentes/síntese química , Lipídeos/química , Lipossomos , Imageamento por Ressonância Magnética/métodos , Neoplasias Ovarianas/diagnóstico , Adenocarcinoma/diagnóstico , Linhagem Celular Tumoral , Meios de Contraste/química , Feminino , Corantes Fluorescentes/química , Humanos , Lipídeos/síntese química , Lipossomos/análise , Microscopia de Fluorescência/métodos , Estrutura Molecular
20.
Int J Mol Sci ; 11(4): 1759-76, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20480040

RESUMO

In this review we discuss the development of paramagnetic liposomes incorporating MRI contrast agents and show how these are utilized in cellular imaging in vitro. Bi-functional, bi-modal imaging paramagnetic liposome systems are also described. Next we discuss the upgrading of paramagnetic liposomes into bi-modal imaging neutral nanoparticles for in vivo imaging applications. We discuss the development of such systems and show how paramagnetic liposomes and imaging nanoparticles could be developed as platforms for future multi-functional, multi-modal imaging theranostic nanodevices tailor-made for the combined imaging of early stage disease pathology and functional drug delivery.


Assuntos
Lipossomos/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Meios de Contraste/química , Humanos , Lipossomos/metabolismo , Imageamento por Ressonância Magnética , Microscopia de Fluorescência , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA