Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 281: 111881, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401121

RESUMO

We need to produce higher foods even under declining natural resources to feed the projected population of 9 billion by 2050 and to sustain food security and nutrition. Abiotic stress has adversely affected canola crop and oil quality especially in sandy soils. To combat this stress, adaptation at the farm level using new and cost-effective amendments are required. Field trials were conducted in two different climatic zones to determine the efficacy of cane molasses, bagasse ash, sugar beet factory lime, and their compost mixtures to improve soil quality and heat stress-adapting canola. The results showed a significant improvement in bulk density, hydraulic conductivity, organic matter content, and available macronutrients of sandy soil and subsequent canola growth, yield, quality and water productivity due to the application of the tested soil amendments, particularly those mixed with compost. Despite the estimated reduction of yield by 18.5% due to heat stress, application of sugar beet lime and compost mixture not only compensated for this reduction but also increased the seed yield by 27.0%. These findings highlight the value of recycling compost-based sugar crop disposal as a cost-effective technology to boost crop tolerance to abiotic stress, ensuring sustainable agriculture and food security in arid environments.


Assuntos
Brassica napus , Poluentes do Solo , Agricultura , Solo , Poluentes do Solo/análise , Estresse Fisiológico , Açúcares
2.
Heliyon ; 10(5): e26077, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434411

RESUMO

Water deficit is a critical obstacle that devastatingly impacts rice production, particularly in arid regions under current climatic fluctuations. Accordingly, it is decisive to reinforce the drought tolerance of rice by employing sustainable approaches to enhance global food security. The present study aimed at exploring the effect of exogenous application using different biostimulants on physiological, morphological, and yield attributes of diverse rice genotypes under water deficit and well-watered conditions in 2-year field trial. Three diverse rice genotypes (IRAT-112, Giza-178, and IR-64) were evaluated under well-watered (14400 m3/ha in total for the entire season) and water deficit (9170 m3/ha) conditions and were exogenously sprayed by nano-silicon, potassium sulfate, or proline. The results showed that drought stress substantially decreased all studied photosynthetic pigments, growth traits, and yield attributes compared to well-watered conditions. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased compared with those under well-watered conditions. However, the foliar application of nano-silicon, potassium sulfate, and proline substantially mitigated the deleterious effects of drought stress and markedly enhanced photosynthetic pigments, antioxidant enzyme activities, growth parameters, and yield contributing traits compared to untreated stressed control. Among the assessed treatments, foliar spray with nano-silicon or proline was more effective in promoting drought tolerance. The exogenous application of proline improved chlorophyll a, chlorophyll b, and carotenoids by 21.4, 19.6 and 21.0% followed by nano-silicon treatment, which enhanced chlorophyll a, chlorophyll b, and carotenoids by 21.1, 17.6 and 9.5% compared to untreated control. Besides, the application of proline demonstrated a superior improvement in the content of proline by 52.5% compared with the untreated control. Moreover, nano-silicon exhibited the maximum enhancement of catalase and peroxidase activity compared to the other treatments. The positive impacts of applied exogenously nano-silicon or proline significantly increased panicle length, number of panicles/plant, number of grains/panicle, fertility percentage, 1000-grain weight, panicle weight, and grain yield, compared to untreated plants under water deficit conditions. In addition, the physiological and agronomic performance of evaluated rice genotypes significantly contrasted under drought conditions. The genotype Giza-178 displayed the best performance under water deficit conditions compared with the other genotypes. Consequently, the integration of applied exogenously nano-silicon or proline with tolerant rice genotype as Giza-178 is an efficient approach to ameliorating drought tolerance and achieving agricultural sustainability under water-scarce conditions in arid environments.

3.
Life (Basel) ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792661

RESUMO

Nitrogen is an essential element for maize growth, but excessive application can lead to various environmental and ecological issues, including water pollution, air pollution, greenhouse gas emissions, and biodiversity loss. Hence, developing maize hybrids resilient to low-N conditions is vital for sustainable agriculture, particularly in nitrogen-deficient soils. Combining ability and genetic relationships among parental lines is crucial for breeding superior hybrids under diverse nitrogen levels. This study aimed to assess the genetic diversity of maize inbred lines using simple sequence repeat (SSR) markers and evaluate their combining ability to identify superior hybrids under low-N and recommended conditions. Local and exotic inbred lines were genotyped using SSR markers, revealing substantial genetic variation with high gene diversity (He = 0.60), moderate polymorphism information content (PIC = 0.54), and an average of 3.64 alleles per locus. Twenty-one F1 hybrids were generated through a diallel mating design using these diverse lines. These hybrids and a high yielding commercial check (SC-131) were field-tested under low-N and recommended N conditions. Significant variations (p < 0.01) were observed among nitrogen levels, hybrids, and their interaction for all recorded traits. Additive genetic variances predominated over non-additive genetic variances for grain yield and most traits. Inbred IL3 emerged as an effective combiner for developing early maturing genotypes with lower ear placement. Additionally, inbreds IL1, IL2, and IL3 showed promise as superior combiners for enhancing grain yield and related traits under both low-N and recommended conditions. Notably, hybrids IL1×IL4, IL2×IL5, IL2×IL6, and IL5×IL7 exhibited specific combining abilities for increasing grain yield and associated traits under low-N stress conditions. Furthermore, strong positive associations were identified between grain yield and specific traits like plant height, ear length, number of rows per ear, and number of kernels per row. Due to their straightforward measurability, these relationships underscore the potential of using these traits as proxies for indirect selection in early breeding generations, particularly under low-N stress. This research contributes to breeding nitrogen-efficient maize hybrids and advances our understanding of the genetic foundations for tolerance to nitrogen limitations.

4.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903963

RESUMO

The pink stem borer (PSB), Sesamia cretica (Lepidoptera: Noctuidae) purple-lined borer (PLB), Chilo agamemnon (Lepidoptera: Crambidae) and European corn borer Ostrinia nubilalis, (Lepidoptera: Crambidae) are considered the most devastating insect pests of maize production in the Mediterranean region. The frequent use of chemical insecticides has resulted in the evolution of resistance to various insect pests as well as the pernicious impact on natural enemies and environmental hazardousness. Therefore, developing resistant and high-yielding hybrids is the best economic and environmental approach to cope with these destructive insects. Accordingly, the objective of the study was to estimate the combining ability of maize inbred lines (ILs), identify promising hybrids, determine gene action controlling agronomic traits and resistance to PSB and PLB, and investigate inter-relationships among evaluated traits. A half-diallel mating design was employed to cross seven diverse maize inbreds to generate 21 F1 hybrids. The developed F1 hybrids, alongside high-yielding commercial check hybrid (SC-132), were assessed in field trials for two years under natural infestation. Substantial variations were obtained among the evaluated hybrids for all recorded characteristics. The non-additive gene action was major for grain yield and its contributing traits, while the additive gene action was more important in controlling the inheritance of PSB and PLB resistance. The inbred line IL1 was identified to be a good combiner for earliness and developing short-stature genotypes. Additionally, IL6 and IL7 were recognized as excellent combiners to enhance resistance to PSB, PLB and grain yield. The hybrid combinations IL1×IL6, IL3×IL6, and IL3×IL7 were determined to be excellent specific combiners for resistance to PSB, PLB and grain yield. Strong positive associations were identified among grain yield, its related traits, and resistance to PSB and PLB. This implies their importance as useful traits for indirect selection for improving grain yield. Otherwise, the resistance against PSB and PLB was negatively associated with the silking date, indicating that earliness would be favorable for escaping from the borer's attack. It could be concluded that the inheritance of PSB and PLB resistance can be governed by the additive gene effects, and the IL1×IL6, IL3×IL6, and IL3×IL7 hybrid combinations can be recommended as excellent combiners for resistance to PSB and PLB and good yield.

5.
Life (Basel) ; 13(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38137895

RESUMO

Water deficit poses significant environmental stress that adversely affects the growth and productivity of durum wheat. Moreover, projections of climate change suggest an increase in the frequency and severity of droughts, particularly in arid regions. Consequently, there is an urgent need to develop drought-tolerant and high-yielding genotypes to ensure sustained production and global food security in response to population growth. This study aimed to explore the genetic diversity among local and exotic durum wheat genotypes using simple sequence repeat (SSR) markers and, additionally, to explore the combining ability and agronomic performance of assessed durum wheat genotypes and their 28 F1 crosses under normal and drought stress conditions. The investigated SSRs highlighted and confirmed the high genetic variation among the evaluated parental durum wheat genotypes. These diverse eight parental genotypes were consequently used to develop 28 F1s through a diallel mating design. The parental durum genotypes and their developed 28 F1s were assessed under normal and drought stress conditions. The evaluated genotypes were analyzed for their general and specific combining abilities as well as heterosis for agronomic traits under both conditions. The local cultivar Bani-Suef-7 (P8) is maintained as an effective combiner for developing shortened genotypes and improving earliness. Moreover, the local cultivars Bani-Suef-5 (P7) and Bani-Suef-7 (P8) along with the exotic line W1520 (P6) demonstrated excellent general combining ability for improving grain yield and its components under drought stress conditions. Furthermore, valuable specific hybrid combinations, W988 × W994 (P1 × P2), W996 × W1518 (P3 × P5), W1011 × W1520 (P4 × P6), and Bani-Suef-5 × Bani-Suef-7 (P7 × P8), were identified for grain yield and its components under drought stress conditions. The assessed 36 genotypes were grouped according to tolerance indices into five clusters varying from highly drought-sensitive genotypes (group E) to highly drought-tolerant (group A). The genotypes in cluster A (two crosses) followed by thirteen crosses in cluster B displayed higher drought tolerance compared to the other crosses and their parental genotypes. Subsequently, these hybrids could be considered valuable candidates in future durum wheat breeding programs to develop desired segregants under water-deficit conditions. Strong positive relationships were observed between grain yield and number of grains per spike, plant height, and 1000-grain weight under water-deficit conditions. These results highlight the significance of these traits for indirect selection under drought stress conditions, particularly in the early stages of breeding, owing to their convenient measurability.

6.
Sci Rep ; 12(1): 15227, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075945

RESUMO

This work was carried out to select cotton genotypes adapted to semi-arid climate conditions cultivated under irrigation for high yields and the standards of the fiber quality properties required by the textile industry. Also to determine the predicted and realized gains from different selection indices to improve some economic characters under water stress conditions. Except for lint percentage and Pressley index, F4 generation reduced PCV and GCV values for all studied characters due to reduction in genetic variability and heterozygosity due to different selection procedures that exhausted a significant part of variability. Except for fiber length and micronaire reading, mean performance in the F4 generation was revealed to be higher than those in the F3 generation for all studied characters. However, micronaire reading was lower (desirable) in F4 than F3 generation. Generally, genotypic correlations were higher than phenotypic correlations. Direct selection for lint index (Ped.3) was the most efficient in improving lint cotton yield/plant and bolls/plant. However, the multiplicative index involving all studied characters (I.5) exhibited the highest values for boll weight. Also, the Ped.2 index (direct selection for lint percentage) proved to be the most efficient in improving seed and lint indexes. Direct selection for lint cotton yield/plant (Ped.1) could produce the highest desirable values for lint percentage and seed per boll with a relatively reasonable yield. A selection index involving yield and its components (I.3) is recommended in improving uniformity index, fiber strength, and micronaire reading. The superior five families released from these indices in F4 generation exceeded the better parent for lint cotton yield/plant, bolls/plant, boll weight, seeds/boll, lint index, and reasonable fiber traits. These families could be continued to further generations as breeding material for developing water deficit tolerant genotypes.


Assuntos
Desidratação , Melhoramento Vegetal , Fibra de Algodão , Egito , Genótipo , Gossypium/genética , Humanos , Fenótipo
7.
Plants (Basel) ; 11(7)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406932

RESUMO

Water scarcity is a major environmental stress that adversatively impacts wheat growth, production, and quality. Furthermore, drought is predicted to be more frequent and severe as a result of climate change, particularly in arid regions. Hence, breeding for drought-tolerant and high-yielding wheat genotypes has become more decisive to sustain its production and ensure global food security with continuing population growth. The present study aimed at evaluating different parental bread wheat genotypes (exotic and local) and their hybrids under normal and drought stress conditions. Gene action controlling physiological, agronomic, and quality traits through half-diallel analysis was applied. The results showed that water-deficit stress substantially decreased chlorophyll content, photosynthetic efficiency (FV/Fm), relative water content, grain yield, and yield attributes. On the other hand, proline content, antioxidant enzyme activities (CAT, POD, and SOD), grain protein content, wet gluten content, and dry gluten content were significantly increased compared to well-watered conditions. The 36 evaluated genotypes were classified based on drought tolerance indices into 5 groups varying from highly drought-tolerant (group A) to highly drought-sensitive genotypes (group E). The parental genotypes P3 and P8 were identified as good combiners to increase chlorophyll b, total chlorophyll content, relative water content, grain yield, and yield components under water deficit conditions. Additionally, the cross combinations P2 × P4, P3 × P5, P3 × P8, and P6 × P7 were the most promising combinations to increase yield traits and multiple physiological parameters under water deficit conditions. Furthermore, P1, P2, and P5 were recognized as promising parents to improve grain protein content and wet and dry gluten contents under drought stress. In addition, the crosses P1 × P4, P2 × P3, P2 × P5, P2 × P6, P4 × P7, P5 × P7, P5 × P8, P6 × P8, and P7 × P8 were the best combinations to improve grain protein content under water-stressed and non-stressed conditions. Certain physiological traits displayed highly positive associations with grain yield and its contributing traits under drought stress such as chlorophyll a, chlorophyll b, total chlorophyll content, photosynthetic efficiency (Fv/Fm), proline content, and relative water content, which suggest their importance for indirect selection under water deficit conditions. Otherwise, grain protein content was negatively correlated with grain yield, indicating that selection for higher grain yield could reduce grain protein content under drought stress conditions.

8.
Sci Rep ; 11(1): 24142, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921154

RESUMO

Water deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield-related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


Assuntos
Aclimatação , Pseudomonas putida/crescimento & desenvolvimento , Rhizobium leguminosarum/crescimento & desenvolvimento , Microbiologia do Solo , Vicia faba , Desidratação/metabolismo , Desidratação/microbiologia , Vicia faba/genética , Vicia faba/crescimento & desenvolvimento , Vicia faba/microbiologia
9.
Plants (Basel) ; 9(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899300

RESUMO

Knowledge of combining ability and genetic diversity are important prerequisites for the development of outstanding hybrids that are tolerant to high plant density. This work was carried out to assess general combining ability (GCA) and specific combining ability (SCA), identify promising hybrids, estimate genetic diversity among the inbred lines and correlate genetic distance to hybrid performance and SCA across different plant densities. A total of 28 F1 hybrids obtained by crossing eight adverse inbred lines (four local and four exotic) were evaluated under three plant densities 59,500 (D1), 71,400 (D2) and 83,300 (D3) plants ha-1 using spilt plot design with three replications at two locations during 2018 season. Increasing plant density from D1 to D3 significantly decreased leaf angle (LANG), chlorophyll content (CHLC), all ear characteristics and grain yield per plant (GYPP). Contrarily, days to silking (DTS), anthesis-silking interval (ASI), plant height (PLHT), ear height (EHT), and grain yield per hectare (GYPH) were significantly increased. Both additive and non-additive gene actions were involved in the inheritance of all the evaluated traits, but additive gene action was predominant for most traits. Inbred lines L1, L2, and L5 were the best general combiners for increasing grain yield and other desirable traits across research environments. Two hybrids L2 × L5 and L2 × L8 were found to be good specific combiners for ASI, LANG, GYPP and GYPH. Furthermore, these hybrids are ideal for further testing and promotion for commercialization under high plant density. Genetic distance (GD) among pairs of inbred lines ranged from 0.31 to 0.78, with an average of 0.61. Clustering based on molecular GD has effectively grouped the inbred lines according to their origin. No significant correlation was found between GD and both hybrid performance and SCA for grain yield and other traits and proved to be of no predictive value. Nevertheless, SCA could be used to predict the hybrid performance across all plant densities. Overall, this work presents useful information regarding the inheritance of maize grain yield and other important traits under high plant density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA