Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34921116

RESUMO

Crystallization is a fundamental natural phenomenon and the ubiquitous physical process in materials science for the design of new materials. So far, experimental observations of the structural dynamics in crystallization have been mostly restricted to slow dynamics. We present here an exclusive way to explore the dynamics of crystallization in highly controlled conditions (i.e., in the absence of impurities acting as seeds of the crystallites) as it occurs in vacuum. We have measured the early formation stage of solid Xe nanoparticles nucleated in an expanding supercooled Xe jet by means of an X-ray diffraction experiment with 10-fs X-ray free-electron laser (XFEL) pulses. We found that the structure of Xe nanoparticles is not pure face-centered cubic (fcc), the expected stable phase, but a mixture of fcc and randomly stacked hexagonal close-packed (rhcp) structures. Furthermore, we identified the instantaneous coexistence of the comparably sized fcc and rhcp domains in single Xe nanoparticles. The observations are explained by the scenario of structural aging, in which the nanoparticles initially crystallize in the highly stacking-disordered rhcp phase and the structure later forms the stable fcc phase. The results are reminiscent of analogous observations in hard-sphere systems, indicating the universal role of the stacking-disordered phase in nucleation.

2.
Nature ; 543(7643): 131-135, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28219079

RESUMO

Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique µ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously.


Assuntos
Cristalografia/métodos , Elétrons , Lasers , Luz , Oxigênio/química , Oxigênio/efeitos da radiação , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/efeitos da radiação , Biocatálise/efeitos da radiação , Cianobactérias/química , Transporte de Elétrons/efeitos da radiação , Análise de Fourier , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Ferroproteínas não Heme/química , Ferroproteínas não Heme/metabolismo , Ferroproteínas não Heme/efeitos da radiação , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Temperatura , Fatores de Tempo , Água/química , Água/metabolismo
3.
Sensors (Basel) ; 20(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371522

RESUMO

X-ray single-grating interferometry was applied to conduct accurate wavefront corrections for hard X-ray nanofocusing mirrors. Systematic errors in the interferometer, originating from a grating, a detector, and alignment errors of the components, were carefully examined. Based on the measured wavefront errors, the mirror shapes were directly corrected using a differential deposition technique. The corrected X-ray focusing mirrors with a numerical aperture of 0.01 attained two-dimensionally diffraction-limited performance. The results of the correction indicate that the uncertainty of the wavefront measurement was less than λ/72 in root-mean-square value.

4.
Opt Lett ; 44(6): 1403-1406, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874661

RESUMO

A high-resolution lens-coupled X-ray imaging detector equipped with a thin-layer transparent ceramics scintillator has been developed. The scintillator consists of a 5 µm thick Ce-doped Lu3Al5O12 layer (LuAG:Ce) bonded onto the support substrate of the non-doped LuAG ceramics by using a solid-state diffusion technique. Secondary electron microscopy of the bonded interface indicated that the crystal grains were densely packed without any pores in the optical wavelength scale, indicating a quasi-uniform refractive index across the interface. This guarantees high transparency and minimum reflection, which are essential properties for X-ray imaging detectors. The LuAG:Ce scintillator was incorporated into an X-ray imaging detector coupled with an objective lens with a numerical aperture of 0.85 and an optical magnification of 100. The scintillation light was imaged onto a complementary metal-oxide-semiconductor image sensor. The effective pixel size on the scintillator plane was 65 nm. X-ray transmission images of 200 nm line-and-space patterns were successfully resolved. The high spatial resolution was demonstrated by X-ray transmission images of large integrated circuits with the wiring patterns clearly visualized.

5.
Phys Rev Lett ; 123(12): 123201, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633947

RESUMO

Femtosecond laser pulses have opened new frontiers for the study of ultrafast phase transitions and nonequilibrium states of matter. In this Letter, we report on structural dynamics in atomic clusters pumped with intense near-infrared (NIR) pulses into a nanoplasma state. Employing wide-angle scattering with intense femtosecond x-ray pulses from a free-electron laser source, we find that highly excited xenon nanoparticles retain their crystalline bulk structure and density in the inner core long after the driving NIR pulse. The observed emergence of structural disorder in the nanoplasma is consistent with a propagation from the surface to the inner core of the clusters.

6.
Proc Natl Acad Sci U S A ; 113(6): 1492-7, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26811449

RESUMO

Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities.

7.
Proc Natl Acad Sci U S A ; 113(11): 2928-33, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929369

RESUMO

Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.


Assuntos
Alcaligenes faecalis/enzimologia , Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Nitrito Redutases/química , Alcaligenes faecalis/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Cobre/química , Cristalografia por Raios X/instrumentação , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Oxirredução , Mutação Puntual , Conformação Proteica , Prótons , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 113(46): 13039-13044, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799539

RESUMO

The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Cristalização , Cristalografia/métodos , Detergentes/química , Elétrons , Halobacterium , Lasers , Conformação Proteica , Ácidos Tri-Iodobenzoicos/química
9.
Nat Methods ; 12(1): 61-3, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384243

RESUMO

Serial femtosecond X-ray crystallography (SFX) has revolutionized atomic-resolution structural investigation by expanding applicability to micrometer-sized protein crystals, even at room temperature, and by enabling dynamics studies. However, reliable crystal-carrying media for SFX are lacking. Here we introduce a grease-matrix carrier for protein microcrystals and obtain the structures of lysozyme, glucose isomerase, thaumatin and fatty acid-binding protein type 3 under ambient conditions at a resolution of or finer than 2 Å.


Assuntos
Cristalografia por Raios X/métodos , Lubrificantes , Proteínas/química , Aldose-Cetose Isomerases/química , Cristalização , Proteína 3 Ligante de Ácido Graxo , Proteínas de Ligação a Ácido Graxo/química , Lasers , Óleo Mineral , Muramidase/química , Proteínas de Plantas/química
10.
J Synchrotron Radiat ; 25(Pt 2): 592-603, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488941

RESUMO

X-ray free-electron laser (XFEL) pulses from SPring-8 Ångstrom Compact free-electron LAser (SACLA) with a temporal duration of <10 fs have provided a variety of benefits in scientific research. In a previous study, an arrival-timing monitor was developed to improve the temporal resolution in pump-probe experiments at beamline 3 by rearranging data in the order of the arrival-timing jitter between the XFEL and the synchronized optical laser pulses. This paper presents Timing Monitor Analyzer (TMA), a software package by which users can conveniently obtain arrival-timing data in the analysis environment at SACLA. The package is composed of offline tools that pull stored data from cache storage, and online tools that pull data from a data-handling server in semi-real time during beam time. Users can select the most suitable tool for their purpose, and share the results through a network connection between the offline and online analysis environments.

11.
J Synchrotron Radiat ; 24(Pt 5): 1086-1091, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862633

RESUMO

X-ray free-electron lasers (XFELs) have opened new opportunities for time-resolved X-ray crystallography. Here a nanosecond optical-pump XFEL-probe device developed for time-resolved serial femtosecond crystallography (TR-SFX) studies of photo-induced reactions in proteins at the SPring-8 Angstrom Compact free-electron LAser (SACLA) is reported. The optical-fiber-based system is a good choice for a quick setup in a limited beam time and allows pump illumination from two directions to achieve high excitation efficiency of protein microcrystals. Two types of injectors are used: one for extruding highly viscous samples such as lipidic cubic phase (LCP) and the other for pulsed liquid droplets. Under standard sample flow conditions from the viscous-sample injector, delay times from nanoseconds to tens of milliseconds are accessible, typical time scales required to study large protein conformational changes. A first demonstration of a TR-SFX experiment on bacteriorhodopsin in bicelle using a setup with a droplet-type injector is also presented.

12.
Opt Lett ; 41(4): 733-6, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872175

RESUMO

We present single-shot measurements of the longitudinal photon source position of the SPring-8 Angstrom Compact Free Electron Laser x-ray free electron laser by means of x-ray grating interferometry. The measurements were performed in order to study the behavior of the source under normal operation conditions and as a dependence on the active undulator length. The retrieved experimental results show that x-ray grating interferometry is a powerful in situ monitoring tool for investigating and tuning an x-ray free electron laser.

13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2519-25, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627659

RESUMO

Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Šis successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.


Assuntos
Cloro/química , Cristalografia por Raios X/métodos , Muramidase/química , Enxofre/química , Motivos de Aminoácidos , Animais , Galinhas , Clara de Ovo/química , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/isolamento & purificação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
J Synchrotron Radiat ; 22(3): 571-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931070

RESUMO

A data acquisition system for X-ray free-electron laser experiments at SACLA has been developed. The system has been designed for reliable shot-to-shot data storage with a high data stream greater than 4 Gbps and massive data analysis. Configuration of the system and examples of prompt data analysis during experiments are presented. Upgrade plans for the system to extend flexibility are described.

15.
J Synchrotron Radiat ; 22(3): 532-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931065

RESUMO

An experimental system for serial femtosecond crystallography using an X-ray free-electron laser (XFEL) has been developed. It basically consists of a sample chamber, fluid injectors and a two-dimensional detector. The chamber and the injectors are operated under helium atmosphere at 1 atm. The ambient pressure operation facilitates applications to fluid samples. Three kinds of injectors are employed to feed randomly oriented crystals in aqueous solution or highly viscous fluid. Experiments on lysozyme crystals were performed by using the 10 keV XFEL of the SPring-8 Angstrom Compact free-electron LAser (SACLA). The structure of model protein lysozyme from 1 µm crystals at a resolution of 2.4 Šwas obtained.


Assuntos
Cristalografia por Raios X/instrumentação , Elétrons , Lasers , Muramidase/ultraestrutura , Aceleradores de Partículas/instrumentação , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Japão , Iluminação/instrumentação , Muramidase/química , Conformação Proteica , Raios X
16.
Opt Express ; 22(8): 9004-15, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787789

RESUMO

The knowledge of the X-ray wavefront is of importance for many experiments at synchrotron sources and hard X-ray free-electron lasers. We will report on metrology measurements performed at the SACLA X-ray Free Electron Laser by means of grating interferometry which allows for an at-wavelength, in-situ, and single-shot characterization of the X-ray wavefront. At SACLA the grating interferometry technique was used for the study of the X-ray optics installed upstream of the end station, two off-set mirror systems and a double crystal monochromator. The excellent quality of the optical components was confirmed by the experimental results. Consequently grating interferometry presents the ability to support further technical progresses in X-ray mirror manufacturing and mounting.

17.
Phys Rev Lett ; 111(4): 043001, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931361

RESUMO

X-ray fluorescence spectroscopy demonstrates that a single core-hole krypton with a 170-as lifetime can be photoionized again to a double core-hole state by an intense x-ray pulse. The observation indicates that unconventional interaction between intense x rays and atoms is no more negligible in applications with x-ray free-electron lasers. Quantitative analysis of the double core-hole creation including effects of a pulsed and spiky temporal structure enables estimation of the x-ray pulse duration in the sub-10-fs range.

18.
Phys Rev Lett ; 109(14): 144801, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083249

RESUMO

We determined the pulse duration of x-ray free electron laser light at 10 keV using highly resolved single-shot spectra, combined with an x-ray free electron laser simulation. Spectral profiles, which were measured with a spectrometer composed of an ultraprecisely figured elliptical mirror and an analyzer flat crystal of silicon (555), changed markedly when we varied the compression strength of the electron bunch. The analysis showed that the pulse durations were reduced from 31 to 4.5 fs for the strongest compression condition. The method, which is readily applicable to evaluate shorter pulse durations, provides a firm basis for the development of femtosecond to attosecond sciences in the x-ray region.


Assuntos
Lasers , Modelos Teóricos , Análise Espectral/instrumentação , Análise Espectral/métodos , Elétrons , Silício/química , Raios X
19.
Opt Express ; 19(1): 317-24, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21263571

RESUMO

The 13th harmonic of a Ti:sapphire (Ti:S) laser in the plateau region was injected as a seeding source to a 250-MeV free-electron-laser (FEL) amplifier. When the amplification conditions were fulfilled, strong enhancement of the radiation intensity by a factor of 650 was observed. The random and uncontrollable spikes, which appeared in the spectra of the Self-Amplified Spontaneous Emission (SASE) based FEL radiation without the seeding source, were found to be suppressed drastically to form to a narrow-band, single peak profile at 61.2 nm. The properties of the seeded FEL radiation were well reproduced by numerical simulations. We discuss the future precept of the seeded FEL scheme to the shorter wavelength region.

20.
IUCrJ ; 7(Pt 1): 10-17, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31949900

RESUMO

With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA