Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 53(6): 1853-1861, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404085

RESUMO

Infants admitted to the neonatal intensive care unit (NICU) often suffer from multifaceted pulmonary morbidities that are not well understood. Ultrashort echo time (UTE) magnetic resonance imaging (MRI) is a promising technique for pulmonary imaging in this population without requiring exposure to ionizing radiation. The aims of this study were to investigate the effect of neonatal pulmonary disease on R2 * and tissue density and to utilize numerical simulations to evaluate the effect of different alveolar structures on predicted R2 *.This was a prospective study, in which 17 neonatal human subjects (five control, seven with bronchopulmonary dysplasia [BPD], five with congenital diaphragmatic hernia [CDH]) were enrolled. Twelve subjects were male and five were female, with postmenstrual age (PMA) at MRI of 39.7 ± 4.7 weeks. A 1.5T/multiecho three-dimensional UTE MRI was used. Pulmonary R2 * and tissue density were compared across disease groups over the whole lung and regionally. A spherical shell alveolar model was used to predict the expected R2 * over a range of tissue densities and tissue susceptibilities. Tests for significantly different mean R2 * and tissue densities across disease groups were evaluated using analysis of variance, with subsequent pairwise group comparisons performed using t tests. Lung tissue density was lower in the ipsilateral lung in CDH compared to both controls and BPD patients (both p < 0.05), while only the contralateral lung in CDH (CDHc) had higher whole-lung R2 * than both controls and BPD (both p < 0.05). R2 * differences were significant between controls and CDHc within all tissue density ranges (all p < 0.05) with the exception of the 80%-90% range (p = 0.17). Simulations predicted an inverse relationship between alveolar tissue density and R2 * that matches empirical human data. Alveolar wall thickness had no effect on R2 * independent of density (p = 1). The inverse relationship between R2 * and tissue density is influenced by the presence of disease globally and regionally in neonates with BPD and CDH in the NICU. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.


Assuntos
Displasia Broncopulmonar , Pulmão , Displasia Broncopulmonar/diagnóstico por imagem , Pré-Escolar , Feminino , Humanos , Imageamento Tridimensional , Lactente , Recém-Nascido , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos
2.
Magn Reson Med ; 84(2): 920-927, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31855294

RESUMO

PURPOSE: Novel demonstration of R2∗ and tissue density estimation in infant lungs using 3D ultrashort echo time MRI. Differences between adult and neonates with no clinical indication of lung pathology is explored, as well as relationships between parameter estimates and gravitationally dependent position and lung inflation state. This provides a tool for probing physiologic processes that may be relevant to pulmonary disease and progression in newborns. METHODS: R2∗ and tissue density were estimated in a phantom consisting of standards allowing for ground truth comparisons and in human subjects (N = 5 infants, N = 4 adults, no clinical indication of lung dysfunction) using a 3D radial multiecho ultrashort echo time MRI sequence. Whole lung averages were compared between infants and adults. Dependence of the metrics on anterior-posterior position as well as between end-tidal inspiration and expiration were explored, in addition to the general relationship between R2∗ and tissue density. RESULTS: Estimates in the phantom did not differ significantly from ground truth. Neonates had significantly lower mean R2∗ (P = .006) and higher mean tissue density (P = 1.5e-5) than adults. Tissue density and R2∗ were both significantly dependent on anterior-posterior position and lung inflation state (P < .005). An overall inverse relationship was found between R2∗ and tissue density, which was similar in both neonates and adults. CONCLUSION: Estimation of tissue density and R2∗ in free breathing, nonsedated, neonatal patients is feasible using multiecho ultrashort echo time MRI. R2∗ was no different between infants and adults when matched for tissue density, although density of lung parenchyma was, on average, lower in adults than neonates.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Adulto , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA