Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 43(36): 6320-6329, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37580121

RESUMO

Recent neural evidence suggests that the human brain contains dissociable systems for "scene categorization" (i.e., recognizing a place as a particular kind of place, for example, a kitchen), including the parahippocampal place area, and "visually guided navigation" (e.g., finding our way through a kitchen, not running into the kitchen walls or banging into the kitchen table), including the occipital place area. However, converging behavioral data - for instance, whether scene categorization and visually guided navigation abilities develop along different timelines and whether there is differential breakdown under neurologic deficit - would provide even stronger support for this two-scene-systems hypothesis. Thus, here we tested scene categorization and visually guided navigation abilities in 131 typically developing children between 4 and 9 years of age, as well as 46 adults with Williams syndrome, a developmental disorder with known impairment on "action" tasks, yet relative sparing on "perception" tasks, in object processing. We found that (1) visually guided navigation is later to develop than scene categorization, and (2) Williams syndrome adults are impaired in visually guided navigation, but not scene categorization, relative to mental age-matched children. Together, these findings provide the first developmental and neuropsychological evidence for dissociable cognitive systems for recognizing places and navigating through them.SIGNIFICANCE STATEMENT Two decades ago, Milner and Goodale showed us that identifying objects and manipulating them involve distinct cognitive and neural systems. Recent neural evidence suggests that the same may be true of our interactions with our environment: identifying places and navigating through them are dissociable systems. Here we provide converging behavioral evidence supporting this two-scene-systems hypothesis - finding both differential development and breakdown of "scene categorization" and "visually guided navigation." This finding suggests that the division of labor between perception and action systems is a general organizing principle for the visual system, not just a principle of the object processing system in particular.


Assuntos
Síndrome de Williams , Adulto , Criança , Humanos , Mapeamento Encefálico , Reconhecimento Visual de Modelos , Imageamento por Ressonância Magnética , Cognição , Estimulação Luminosa
2.
Proc Natl Acad Sci U S A ; 117(11): 6163-6169, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123077

RESUMO

It is well established that the adult brain contains a mosaic of domain-specific networks. But how do these domain-specific networks develop? Here we tested the hypothesis that the brain comes prewired with connections that precede the development of domain-specific function. Using resting-state fMRI in the youngest sample of newborn humans tested to date, we indeed found that cortical networks that will later develop strong face selectivity (including the "proto" occipital face area and fusiform face area) and scene selectivity (including the "proto" parahippocampal place area and retrosplenial complex) by adulthood, already show domain-specific patterns of functional connectivity as early as 27 d of age (beginning as early as 6 d of age). Furthermore, we asked how these networks are functionally connected to early visual cortex and found that the proto face network shows biased functional connectivity with foveal V1, while the proto scene network shows biased functional connectivity with peripheral V1. Given that faces are almost always experienced at the fovea, while scenes always extend across the entire periphery, these differential inputs may serve to facilitate domain-specific processing in each network after that function develops, or even guide the development of domain-specific function in each network in the first place. Taken together, these findings reveal domain-specific and eccentricity-biased connectivity in the earliest days of life, placing new constraints on our understanding of the origins of domain-specific cortical networks.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Reconhecimento Facial/fisiologia , Rede Nervosa/fisiologia , Processamento Espacial/fisiologia , Adulto , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
3.
Hum Brain Mapp ; 43(9): 2782-2800, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35274789

RESUMO

Scanning young children while they watch short, engaging, commercially-produced movies has emerged as a promising approach for increasing data retention and quality. Movie stimuli also evoke a richer variety of cognitive processes than traditional experiments, allowing the study of multiple aspects of brain development simultaneously. However, because these stimuli are uncontrolled, it is unclear how effectively distinct profiles of brain activity can be distinguished from the resulting data. Here we develop an approach for identifying multiple distinct subject-specific Regions of Interest (ssROIs) using fMRI data collected during movie-viewing. We focused on the test case of higher-level visual regions selective for faces, scenes, and objects. Adults (N = 13) were scanned while viewing a 5.6-min child-friendly movie, as well as a traditional localizer experiment with blocks of faces, scenes, and objects. We found that just 2.7 min of movie data could identify subject-specific face, scene, and object regions. While successful, movie-defined ssROIS still showed weaker domain selectivity than traditional ssROIs. Having validated our approach in adults, we then used the same methods on movie data collected from 3 to 12-year-old children (N = 122). Movie response timecourses in 3-year-old children's face, scene, and object regions were already significantly and specifically predicted by timecourses from the corresponding regions in adults. We also found evidence of continued developmental change, particularly in the face-selective posterior superior temporal sulcus. Taken together, our results reveal both early maturity and functional change in face, scene, and object regions, and more broadly highlight the promise of short, child-friendly movies for developmental cognitive neuroscience.


Assuntos
Mapeamento Encefálico , Filmes Cinematográficos , Retenção Psicológica , Adulto , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia
4.
Neuroimage ; 184: 90-100, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30217542

RESUMO

What is a face? Intuition, along with abundant behavioral and neural evidence, indicates that internal features (e.g., eyes, nose, mouth) are critical for face recognition, yet some behavioral and neural findings suggest that external features (e.g., hair, head outline, neck and shoulders) may likewise be processed as a face. Here we directly test this hypothesis by investigating how external (and internal) features are represented in the brain. Using fMRI, we found highly selective responses to external features (relative to objects and scenes) within the face processing system in particular, rivaling that observed for internal features. We then further asked how external and internal features are represented in regions of the cortical face processing system, and found a similar division of labor for both kinds of features, with the occipital face area and posterior superior temporal sulcus representing the parts of both internal and external features, and the fusiform face area representing the coherent arrangement of both internal and external features. Taken together, these results provide strong neural evidence that a "face" is composed of both internal and external features.


Assuntos
Córtex Cerebral/fisiologia , Reconhecimento Facial/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Adulto Jovem
5.
Dev Sci ; 22(2): e12737, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176106

RESUMO

Rodent lesion studies have revealed the existence of two causally dissociable spatial memory systems, localized to the hippocampus and striatum that are preferentially sensitive to environmental boundaries and landmark objects, respectively. Here we test whether these two memory systems are causally dissociable in humans by examining boundary- and landmark-based memory in typical and atypical development. Adults with Williams syndrome (WS)-a developmental disorder with known hippocampal abnormalities-and typical children and adults, performed a navigation task that involved learning locations relative to a boundary or a landmark object. We found that boundary-based memory was severely impaired in WS compared to typically-developing mental-age matched (MA) children and chronological-age matched (CA) adults, whereas landmark-based memory was similar in all groups. Furthermore, landmark-based memory matured earlier in typical development than boundary-based memory, consistent with the idea that the WS cognitive phenotype arises from developmental arrest of late maturing cognitive systems. Together, these findings provide causal and developmental evidence for dissociable spatial memory systems in humans.


Assuntos
Deficiências do Desenvolvimento/fisiopatologia , Memória Espacial/fisiologia , Síndrome de Williams/fisiopatologia , Adulto , Criança , Cognição/fisiologia , Corpo Estriado/fisiologia , Feminino , Hipocampo/fisiologia , Humanos , Masculino , Testes de Navegação Mental , Navegação Espacial/fisiologia
6.
Neuroimage ; 132: 417-424, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26931815

RESUMO

Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents is not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found that OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements - both in spatial boundary and scene content representation - while PPA and RSC represent global scene properties.


Assuntos
Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Giro Para-Hipocampal/fisiologia , Estimulação Luminosa , Adulto Jovem
7.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746251

RESUMO

Humans effortlessly use vision to plan and guide navigation through the local environment, or "scene". A network of three cortical regions responds selectively to visual scene information, including the occipital (OPA), parahippocampal (PPA), and medial place areas (MPA) - but how this network supports visually-guided navigation is unclear. Recent evidence suggests that one region in particular, the OPA, supports visual representations for navigation, while PPA and MPA support other aspects of scene processing. However, most previous studies tested only static scene images, which lack the dynamic experience of navigating through scenes. We used dynamic movie stimuli to test whether OPA, PPA, and MPA represent two critical kinds of navigationally-relevant information: navigational affordances (e.g., can I walk to the left, right, or both?) and ego-motion (e.g., am I walking forward or backward? turning left or right?). We found that OPA is sensitive to both affordances and ego-motion, as well as the conflict between these cues - e.g., turning toward versus away from an open doorway. These effects were significantly weaker or absent in PPA and MPA. Responses in OPA were also dissociable from those in early visual cortex, consistent with the idea that OPA responses are not merely explained by lower-level visual features. OPA responses to affordances and ego-motion were stronger in the contralateral than ipsilateral visual field, suggesting that OPA encodes navigationally relevant information within an egocentric reference frame. Taken together, these results support the hypothesis that OPA contains visual representations that are useful for planning and guiding navigation through scenes.

8.
Curr Dir Psychol Sci ; 32(6): 479-486, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38283826

RESUMO

Decades of research have uncovered the neural basis of place (or "scene") processing in adulthood, revealing a set of three regions that respond selectively to visual scene information, each hypothesized to support distinct functions within scene processing (e.g., recognizing a particular kind of place versus navigating through it). Despite this considerable progress, surprisingly little is known about how these cortical regions develop. Here we review the limited evidence to date, highlighting the first few studies exploring the origins of cortical scene processing in infancy, and the several studies addressing when the scene regions reach full maturity, unfortunately with inconsistent findings. This inconsistency likely stems from common pitfalls in pediatric functional magnetic resonance imaging, and accordingly, we discuss how these pitfalls may be avoided. Furthermore, we point out that almost all studies to date have focused only on general scene selectivity and argue that greater insight could be gleaned by instead exploring the more distinct functions of each region, as well as their connectivity. Finally, with this last point in mind, we offer a novel hypothesis that scene regions supporting navigation (including the occipital place area and retrosplenial complex) mature later than those supporting scene categorization (including the parahippocampal place area).

9.
Trends Cogn Sci ; 26(2): 117-127, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857468

RESUMO

Since the discovery of three scene-selective regions in the human brain, a central assumption has been that all three regions directly support navigation. We propose instead that cortical scene processing regions support three distinct computational goals (and one not for navigation at all): (i) The parahippocampal place area supports scene categorization, which involves recognizing the kind of place we are in; (ii) the occipital place area supports visually guided navigation, which involves finding our way through the immediately visible environment, avoiding boundaries and obstacles; and (iii) the retrosplenial complex supports map-based navigation, which involves finding our way from a specific place to some distant, out-of-sight place. We further hypothesize that these systems develop along different timelines, with both navigation systems developing slower than the scene categorization system.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo , Humanos
10.
Neuropsychologia ; 164: 108092, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34801519

RESUMO

Shape perception is crucial for object recognition. However, it remains unknown exactly how shape information is represented and used by the visual system. Here, we tested the hypothesis that the visual system represents object shape via a skeletal structure. Using functional magnetic resonance imaging (fMRI) and representational similarity analysis (RSA), we found that a model of skeletal similarity explained significant unique variance in the response profiles of V3 and LO. Moreover, the skeletal model remained predictive in these regions even when controlling for other models of visual similarity that approximate low-to high-level visual features (i.e., Gabor-jet, GIST, HMAX, and AlexNet), and across different surface forms, a manipulation that altered object contours while preserving the underlying skeleton. Together, these findings shed light on shape processing in human vision, as well as the computational properties of V3 and LO. We discuss how these regions may support two putative roles of shape skeletons: namely, perceptual organization and object recognition.


Assuntos
Percepção de Forma , Córtex Visual , Mapeamento Encefálico , Percepção de Forma/fisiologia , Humanos , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia
11.
Cortex ; 140: 199-209, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992908

RESUMO

Successfully navigating the world requires avoiding boundaries and obstacles in one's immediately-visible environment, as well as finding one's way to distant places in the broader environment. Recent neuroimaging studies suggest that these two navigational processes involve distinct cortical scene processing systems, with the occipital place area (OPA) supporting navigation through the local visual environment, and the retrosplenial complex (RSC) supporting navigation through the broader spatial environment. Here we hypothesized that these systems are distinguished not only by the scene information they represent (i.e., the local visual versus broader spatial environment), but also based on the automaticity of the process they involve, with navigation through the broader environment (including RSC) operating deliberately, and navigation through the local visual environment (including OPA) operating automatically. We tested this hypothesis using fMRI and a maze-navigation paradigm, where participants navigated two maze structures (complex or simple, testing representation of the broader spatial environment) under two conditions (active or passive, testing deliberate versus automatic processing). Consistent with the hypothesis that RSC supports deliberate navigation through the broader environment, RSC responded significantly more to complex than simple mazes during active, but not passive navigation. By contrast, consistent with the hypothesis that OPA supports automatic navigation through the local visual environment, OPA responded strongly even during passive navigation, and did not differentiate between active versus passive conditions. Taken together, these findings suggest the novel hypothesis that navigation through the broader spatial environment is deliberate, whereas navigation through the local visual environment is automatic, shedding new light on the dissociable functions of these systems.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Giro do Cíngulo , Humanos , Neuroimagem
12.
Curr Biol ; 30(3): 544-550.e3, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31956027

RESUMO

Human adults flawlessly and effortlessly navigate boundaries and obstacles in the immediately visible environment, a process we refer to as "visually guided navigation." Neuroimaging work in adults suggests this ability involves the occipital place area (OPA) [1, 2]-a scene-selective region in the dorsal stream that selectively represents information necessary for visually guided navigation [3-9]. Despite progress in understanding the neural basis of visually guided navigation, however, little is known about how this system develops. Is navigationally relevant information processing present in the first few years of life? Or does this information processing only develop after many years of experience? Although a handful of studies have found selective responses to scenes (relative to objects) in OPA in childhood [10-13], no study has explored how more specific navigationally relevant information processing emerges in this region. Here, we do just that by measuring OPA responses to first-person perspective motion information-a proxy for the visual experience of actually navigating the immediate environment-using fMRI in 5- and 8-year-old children. We found that, although OPA already responded more to scenes than objects by age 5, responses to first-person perspective motion were not yet detectable at this same age and rather only emerged by age 8. This protracted development was specific to first-person perspective motion through scenes, not motion on faces or objects, and was not found in other scene-selective regions (the parahippocampal place area or retrosplenial complex) or a motion-selective region (MT). These findings therefore suggest that navigationally relevant information processing in OPA undergoes prolonged development across childhood.


Assuntos
Percepção de Movimento/fisiologia , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
13.
Cognition ; 168: 146-153, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28683351

RESUMO

Prior work suggests that our understanding of how things work ("intuitive physics") and how people work ("intuitive psychology") are distinct domains of human cognition. Here we directly test the dissociability of these two domains by investigating knowledge of intuitive physics and intuitive psychology in adults with Williams syndrome (WS) - a genetic developmental disorder characterized by severely impaired spatial cognition, but relatively spared social cognition. WS adults and mental-age matched (MA) controls completed an intuitive physics task and an intuitive psychology task. If intuitive physics is a distinct domain (from intuitive psychology), then we should observe differential impairment on the physics task for individuals with WS compared to MA controls. Indeed, adults with WS performed significantly worse on the intuitive physics than the intuitive psychology task, relative to controls. These results support the hypothesis that knowledge of the physical world can be disrupted independently from knowledge of the social world.


Assuntos
Intuição , Fenômenos Físicos , Percepção Social , Síndrome de Williams/psicologia , Pré-Escolar , Compreensão , Feminino , Humanos , Masculino , Testes Neuropsicológicos
14.
Cortex ; 83: 17-26, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27474914

RESUMO

Neuroimaging studies have identified multiple scene-selective regions in human cortex, but the precise role each region plays in scene processing is not yet clear. It was recently hypothesized that two regions, the occipital place area (OPA) and the retrosplenial complex (RSC), play a direct role in navigation, while a third region, the parahippocampal place area (PPA), does not. Some evidence suggests a further division of labor even among regions involved in navigation: While RSC is thought to support navigation through the broader environment, OPA may be involved in navigation through the immediately visible environment, although this role for OPA has never been tested. Here we predict that OPA represents first-person perspective motion information through scenes, a critical cue for such "visually-guided navigation", consistent with the hypothesized role for OPA. Response magnitudes were measured in OPA (as well as RSC and PPA) to i) video clips of first-person perspective motion through scenes ("Dynamic Scenes"), and ii) static images taken from these same movies, rearranged such that first-person perspective motion could not be inferred ("Static Scenes"). As predicted, OPA responded significantly more to the Dynamic than Static Scenes, relative to both RSC and PPA. The selective response in OPA to Dynamic Scenes was not due to domain-general motion sensitivity or to low-level information inherited from early visual regions. Taken together, these findings suggest the novel hypothesis that OPA may support visually-guided navigation, insofar as first-person perspective motion information is useful for such navigation, while RSC and PPA support other aspects of navigation and scene recognition.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Percepção de Movimento/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA