Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37652010

RESUMO

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Assuntos
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestrutura , Microscopia Crioeletrônica , Canais Iônicos , Potássio/metabolismo , Rhinosporidium/química
2.
Nature ; 615(7952): 535-540, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859551

RESUMO

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Assuntos
Organismos Aquáticos , Processos Fototróficos , Bombas de Próton , Rodopsinas Microbianas , Organismos Aquáticos/metabolismo , Organismos Aquáticos/efeitos da radiação , Bactérias/metabolismo , Bactérias/efeitos da radiação , Carotenoides/metabolismo , Cor , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Processos Heterotróficos/efeitos da radiação , Luz , Oceanos e Mares , Processos Fototróficos/efeitos da radiação , Bombas de Próton/metabolismo , Bombas de Próton/efeitos da radiação , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efeitos da radiação , Zeaxantinas/metabolismo , Zeaxantinas/efeitos da radiação , Luteína/metabolismo , Luteína/efeitos da radiação , Metagenoma , Lagos
3.
Annu Rev Microbiol ; 75: 427-447, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343014

RESUMO

Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles.


Assuntos
Rodopsina , Rodopsinas Microbianas , Humanos , Rodopsina/química , Rodopsina/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo
4.
Nature ; 574(7776): 132-136, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554965

RESUMO

Heliorhodopsins (HeRs) are a family of rhodopsins that was recently discovered using functional metagenomics1. They are widely present in bacteria, archaea, algae and algal viruses2,3. Although HeRs have seven predicted transmembrane helices and an all-trans retinal chromophore as in the type-1 (microbial) rhodopsin, they display less than 15% sequence identity with type-1 and type-2 (animal) rhodopsins. HeRs also exhibit the reverse orientation in the membrane compared with the other rhodopsins. Owing to the lack of structural information, little is known about the overall fold and the photoactivation mechanism of HeRs. Here we present the 2.4-Å-resolution structure of HeR from an uncultured Thermoplasmatales archaeon SG8-52-1 (GenBank sequence ID LSSD01000000). Structural and biophysical analyses reveal the similarities and differences between HeRs and type-1 microbial rhodopsins. The overall fold of HeR is similar to that of bacteriorhodopsin. A linear hydrophobic pocket in HeR accommodates a retinal configuration and isomerization as in the type-1 rhodopsin, although most of the residues constituting the pocket are divergent. Hydrophobic residues fill the space in the extracellular half of HeR, preventing the permeation of protons and ions. The structure reveals an unexpected lateral fenestration above the ß-ionone ring of the retinal chromophore, which has a critical role in capturing retinal from environment sources. Our study increases the understanding of the functions of HeRs, and the structural similarity and diversity among the microbial rhodopsins.


Assuntos
Rodopsinas Microbianas/química , Thermoplasmales/química , Bacteriorodopsinas/química , Sítios de Ligação , Cristalografia por Raios X , Microscopia de Força Atômica , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Retinaldeído/química , Rodopsinas Microbianas/ultraestrutura
5.
Biophys J ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118325

RESUMO

Proton transfer reactions play important functional roles in many proteins, such as enzymes and transporters, which is also the case in rhodopsins. In fact, functional expression of rhodopsins accompanies intramolecular proton transfer reactions in many cases. One of the exceptional cases can be seen in the protonated form of marine bacterial TAT rhodopsin, which isomerizes the retinal by light but returns to the original state within 10-5 s. Thus, light energy is converted into heat without any function. In contrast, the T82D mutant of TAT rhodopsin conducts the light-induced deprotonation of the Schiff base at high pH. In this article, we report the structural analysis of T82D by means of difference Fourier transform infrared (FTIR) spectroscopy. In the light-induced difference FTIR spectra at 77 K, we observed little hydrogen out-of-plane vibrations for T82D as well as the wild-type (WT), suggesting that the planar chromophore structure itself is not the origin of the reversion from the K intermediate in WT TAT rhodopsin. Upon relaxation of the K intermediate, T82D forms the following intermediate, such as M, whereas K of WT returns to the original state. Present FTIR analysis revealed the proton transfer from the Schiff base to D82 in T82D upon formation of the M intermediate. It is accompanied by the second proton transfer from E54 to the Schiff base, forming the N intermediate, particularly in membranes. The equilibrium between the M and N intermediates corresponds to the protonation equilibrium between E54 and the Schiff base. We also found that Ca2+ binding takes place in T82D as well as WT but with 6 times lower affinity. An altered hydrogen-bonding network would be the origin of low affinity in T82D, where deprotonation of E54 is involved in the Ca2+ binding.

6.
Biochemistry ; 63(7): 843-854, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38458614

RESUMO

Ligand-triggered activation of G protein-coupled receptors (GPCRs) relies on the phenomenon of loose allosteric coupling, which involves conformational alterations spanning from the extracellular ligand-binding domain to the cytoplasmic region, where interactions with G proteins occur. During the GPCR activation process, several intermediate and equilibrium states orchestrate the movement of the flexible and rigid transmembrane (TM) segments of the GPCR. Monitoring early conformational changes is important in unraveling the structural intricacies of the loose allosteric coupling. Here, we focus on the lumi intermediate formed by thermal relaxation from the initial photointermediate, batho in primate green cone pigment (MG), a light-sensitive GPCR responsible for color vision. Our findings from light-induced Fourier transform infrared difference spectroscopy reveal its similarity with rhodopsin, which mediates twilight vision, specifically involving the flip motion of the ß-ionone ring, the relaxation of the torsional structure of the retinal, and local perturbations in the α-helix upon lumi intermediate formation. Conversely, we observe a hydrogen bond modification specific to MG's protonated carboxylic acid, identifying its origin as Glu1022.53 situated in TM2. The weakening of the hydrogen bond strength at Glu1022.53 during the transition from the batho to the lumi intermediates corresponds to a slight outward movement of TM2. Additionally, within the X-ray crystal structure of the rhodopsin lumi intermediate, we note the relocation of the Met862.53 side chain in TM2, expanding the volume of the retinal binding pocket. Consequently, the position of 2.53 emerges as the early step in the conformational shift toward light-induced activation. Moreover, given the prevalence of IR-insensitive hydrophobic amino acids at position 2.53 in many rhodopsin-like GPCRs, including rhodopsin, the hydrogen bond alteration in the C═O stretching band at Glu1022.53 of MG can be used as a probe for tracing conformational changes during the GPCR activation process.


Assuntos
Receptores Acoplados a Proteínas G , Rodopsina , Animais , Rodopsina/química , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Biol Chem ; 299(6): 104726, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094700

RESUMO

The position of the counterion in animal rhodopsins plays a crucial role in maintaining visible light sensitivity and facilitating the photoisomerization of their retinal chromophore. The counterion displacement is thought to be closely related to the evolution of rhodopsins, with different positions found in invertebrates and vertebrates. Interestingly, box jellyfish rhodopsin (JelRh) acquired the counterion in transmembrane 2 independently. This is a unique feature, as in most animal rhodopsins, the counterion is found in a different location. In this study, we used Fourier Transform Infrared spectroscopy to examine the structural changes that occur in the early photointermediate state of JelRh. We aimed to determine whether the photochemistry of JelRh is similar to that of other animal rhodopsins by comparing its spectra to those of vertebrate bovine rhodopsin (BovRh) and invertebrate squid rhodopsin (SquRh). We observed that the N-D stretching band of the retinal Schiff base was similar to that of BovRh, indicating the interaction between the Schiff base and the counterion is similar in both rhodopsins, despite their different counterion positions. Furthermore, we found that the chemical structure of the retinal in JelRh is similar to that in BovRh, including the changes in the hydrogen-out-of-plane band that indicates a retinal distortion. Overall, the protein conformational changes induced by the photoisomerization of JelRh yielded spectra that resemble an intermediate between BovRh and SquRh, suggesting a unique spectral property of JelRh, and making it the only animal rhodopsin with a counterion in TM2 and an ability to activate Gs protein.


Assuntos
Rodopsina , Bases de Schiff , Animais , Bovinos , Fotoquímica , Rodopsina/química , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cubomedusas
8.
Photochem Photobiol Sci ; 23(8): 1435-1443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886314

RESUMO

Photoisomerization is a key photochemical reaction in microbial and animal rhodopsins. It is well established that such photoisomerization is highly selective; all-trans to 13-cis, and 11-cis to all-trans forms in microbial and animal rhodopsins, respectively. Nevertheless, unusual photoisomerization pathways have been discovered recently in microbial rhodopsins. In an enzymerhodopsin NeoR, the all-trans chromophore is isomerized into the 7-cis form exclusively, which is stable at room temperature. Although, the 7-cis form is produced by illumination of retinal, formation of the 7-cis form was never reported for a protonated Schiff base of all-trans retinal in solution. Present HPLC analysis of retinal oximes prepared by hydroxylamine reaction revealed that all-trans and 7-cis forms cannot be separated from the syn peaks under the standard HPLC conditions, while it is possible by the analysis of the anti-peaks. Consequently, we found formation of the 7-cis form by the photoreaction of all-trans chromophore in solution, regardless of the protonation state of the Schiff base. Upon light absorption of all-trans protonated retinal Schiff base in solution, excited-state relaxation accompanies double-bond isomerization, producing 7-cis, 9-cis, 11-cis, or 13-cis form. In contrast, specific chromophore-protein interaction enforces selective isomerization into the 13-cis form in many microbial rhodopsins, but into 7-cis in NeoR.


Assuntos
Rodopsinas Microbianas , Bases de Schiff , Cromatografia Líquida de Alta Pressão , Isomerismo , Luz , Processos Fotoquímicos , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Bases de Schiff/química , Soluções
9.
Phys Chem Chem Phys ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171479

RESUMO

Rhodopsins are photoreceptive membrane proteins containing a retinal chromophore, and the color tuning mechanism in rhodopsins is one of the important topics. Color switch is a color-determining residue at the same position, where replacement of red- and blue-shifting amino acids in two wild-type rhodopsins causes spectral blue- and red-shifts, respectively. The first and most famous color switch in microbial rhodopsins is the L/Q switch in proteorhodopsins (PRs). Green- or blue-absorbing PR (GPR or BPR) contains Leu and Gln at position 105 of the C-helix (TM3), respectively, and their replacement converted absorbing colors. The L/Q switch enables bacteria to absorb green or blue light in shallow or deep ocean waters, respectively. Although Gln and Leu are hydrophilic and hydrophobic residues, respectively, a comprehensive mutation study of position 105 in GPR revealed that the λmax correlated with the volume of residues, not the hydropathy index. To gain structural insights into the mechanism, we applied low-temperature FTIR spectroscopy of L105Q GPR, and the obtained spectra were compared with those of GPR and BPR. The difference FTIR spectra of L105Q GPR were similar to those of BPR, not GPR, implying that the L/Q switch converts the GPR structure into a BPR structure in terms of the local environments of the retinal chromophore. It includes retinal skeletal vibration, hydrogen-bonding strength of the protonated Schiff base, amide-A vibration (peptide backbone), and protein-bound water molecules. Consequently color is switched accompanying such structural alterations, and known as the L/Q switch.

10.
Nature ; 558(7711): 595-599, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925949

RESUMO

Many organisms capture or sense sunlight using rhodopsin pigments1,2, which are integral membrane proteins that bind retinal chromophores. Rhodopsins comprise two distinct protein families 1 , type-1 (microbial rhodopsins) and type-2 (animal rhodopsins). The two families share similar topologies and contain seven transmembrane helices that form a pocket in which retinal is linked covalently as a protonated Schiff base to a lysine at the seventh transmembrane helix2,3. Type-1 and type-2 rhodopsins show little or no sequence similarity to each other, as a consequence of extensive divergence from a common ancestor or convergent evolution of similar structures 1 . Here we report a previously unknown and diverse family of rhodopsins-which we term the heliorhodopsins-that we identified using functional metagenomics and that are distantly related to type-1 rhodopsins. Heliorhodopsins are embedded in the membrane with their N termini facing the cell cytoplasm, an orientation that is opposite to that of type-1 or type-2 rhodopsins. Heliorhodopsins show photocycles that are longer than one second, which is suggestive of light-sensory activity. Heliorhodopsin photocycles accompany retinal isomerization and proton transfer, as in type-1 and type-2 rhodopsins, but protons are never released from the protein, even transiently. Heliorhodopsins are abundant and distributed globally; we detected them in Archaea, Bacteria, Eukarya and their viruses. Our findings reveal a previously unknown family of light-sensing rhodopsins that are widespread in the microbial world.


Assuntos
Metagenômica , Rodopsina/análise , Rodopsina/classificação , Sequência de Aminoácidos , Eucariotos/química , Evolução Molecular , Rodopsina/química , Rodopsina/efeitos da radiação , Rodopsinas Microbianas/análise , Rodopsinas Microbianas/química , Rodopsinas Microbianas/classificação , Rodopsinas Microbianas/efeitos da radiação
11.
Nature ; 561(7723): 343-348, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158696

RESUMO

The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae Guillardia theta, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However, molecular insight into ACR1 is lacking owing to the absence of structural information underlying light-gated anion conductance. Here we present the crystal structure of G. theta ACR1 at 2.9 Å resolution. The structure reveals unusual architectural features that span the extracellular domain, retinal-binding pocket, Schiff-base region, and anion-conduction pathway. Together with electrophysiological and spectroscopic analyses, these findings reveal the fundamental molecular basis of naturally occurring light-gated anion conductance, and provide a framework for designing the next generation of optogenetic tools.


Assuntos
Ânions/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Criptófitas/química , Bacteriorodopsinas/química , Sítios de Ligação , Channelrhodopsins/efeitos da radiação , Cristalografia por Raios X , Condutividade Elétrica , Ativação do Canal Iônico/efeitos da radiação , Transporte de Íons/efeitos da radiação , Modelos Moleculares , Optogenética/métodos , Optogenética/tendências , Retinaldeído/metabolismo , Bases de Schiff/química
12.
Nature ; 561(7723): 349-354, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158697

RESUMO

Both designed and natural anion-conducting channelrhodopsins (dACRs and nACRs, respectively) have been widely applied in optogenetics (enabling selective inhibition of target-cell activity during animal behaviour studies), but each class exhibits performance limitations, underscoring trade-offs in channel structure-function relationships. Therefore, molecular and structural insights into dACRs and nACRs will be critical not only for understanding the fundamental mechanisms of these light-gated anion channels, but also to create next-generation optogenetic tools. Here we report crystal structures of the dACR iC++, along with spectroscopic, electrophysiological and computational analyses that provide unexpected insights into pH dependence, substrate recognition, channel gating and ion selectivity of both dACRs and nACRs. These results enabled us to create an anion-conducting channelrhodopsin integrating the key features of large photocurrent and fast kinetics alongside exclusive anion selectivity.


Assuntos
Ânions/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Ativação do Canal Iônico , Optogenética/métodos , Animais , Caenorhabditis elegans , Células Cultivadas , Channelrhodopsins/genética , Channelrhodopsins/efeitos da radiação , Cristalografia por Raios X , Eletrofisiologia , Feminino , Células HEK293 , Hipocampo/citologia , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos da radiação , Transporte de Íons/efeitos da radiação , Cinética , Masculino , Camundongos , Modelos Moleculares , Neurônios/metabolismo , Especificidade por Substrato
13.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790007

RESUMO

Schizorhodopsins (SzRs), a new rhodopsin family identified in Asgard archaea, are phylogenetically located at an intermediate position between type-1 microbial rhodopsins and heliorhodopsins. SzRs work as light-driven inward H+ pumps as xenorhodopsins in bacteria. Although E81 plays an essential role in inward H+ release, the H+ is not metastably trapped in such a putative H+ acceptor, unlike the other H+ pumps. It remains elusive why SzR exhibits different kinetic behaviors in H+ release. Here, we report the crystal structure of SzR AM_5_00977 at 2.1 Å resolution. The SzR structure superimposes well on that of bacteriorhodopsin rather than heliorhodopsin, suggesting that SzRs are classified with type-1 rhodopsins. The structure-based mutagenesis study demonstrated that the residues N100 and V103 around the ß-ionone ring are essential for color tuning in SzRs. The cytoplasmic parts of transmembrane helices 2, 6, and 7 are shorter than those in the other microbial rhodopsins, and thus E81 is located near the cytosol and easily exposed to the solvent by light-induced structural change. We propose a model of untrapped inward H+ release; H+ is released through the water-mediated transport network from the retinal Schiff base to the cytosol by the side of E81. Moreover, most residues on the H+ transport pathway are not conserved between SzRs and xenorhodopsins, suggesting that they have entirely different inward H+ release mechanisms.


Assuntos
Bombas de Próton/química , Rodopsinas Microbianas/química , Sítios de Ligação , Escherichia coli , Conformação Proteica
14.
Biochemistry ; 62(13): 2013-2020, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37352141

RESUMO

Function of animal and microbial rhodopsins starts by light absorption of the retinal chromophore. The absorption maximum wavelength (λmax) of rhodopsins is determined by the energy gap between the electronically ground (S0) and first excited (S1) state of the retinal chromophore, and the color tuning mechanism is one of the central topics in rhodopsin research. "Color switches", color-determining residues, are red- and blue-shifting amino acids at the same position in two rhodopsins, whose exchange causes spectral blue- and red-shifts, respectively, in each rhodopsin. As mutation easily destroys elaborate chromophore-protein interactions, the known color switches in microbial rhodopsins are limited; the L/Q switch in C-helix (TM3), the A/TS switch in G-helix (TM7), and the G/P switch in F-helix (TM6). Here, we report a novel color switch of microbial rhodopsins, which is located in D-helix (TM4). In this color switch, the red- and blue-shifting amino acids are Asn (N) and Leu (L)/Ile (I), respectively. As Asn and Leu/Ile are polar and nonpolar amino acids, respectively, and the position is located near the ß-ionone ring, the N/LI switch matches the general rule of color tuning by polarity. The N/LI switch is also useful for optogenetics, as many ion-transporting rhodopsins contain blue-shifting amino acids, such as L and I, at that position.


Assuntos
Rodopsina , Rodopsinas Microbianas , Animais , Rodopsina/química , Rodopsinas Microbianas/química , Mutação , Aminoácidos/genética , Cor
15.
Biochemistry ; 62(8): 1347-1359, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37001008

RESUMO

Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O-D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins.


Assuntos
Rodopsina , Rodopsinas Microbianas , Animais , Bovinos , Rodopsina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química , Hidrogênio , Bases de Schiff/química
16.
Phys Chem Chem Phys ; 25(4): 3535-3543, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36637167

RESUMO

Heliorhodopsins (HeRs), a recently discovered family of rhodopsins, have an inverted membrane topology compared to animal and microbial rhodopsins. The slow photocycle of HeRs suggests a light-sensor function, although the actual function remains unknown. Although HeRs exhibit no specific binding of monovalent cations or anions, recent ATR-FTIR spectroscopy studies have demonstrated the binding of Zn2+ to HeR from Thermoplasmatales archaeon (TaHeR) and 48C12. Even though ion-specific FTIR spectra were observed for many divalent cations, only helical structural perturbations were observed for Zn2+-binding, suggesting a possible modification of the HeR function by Zn2+. The present study shows that Zn2+-binding lowers the thermal stability of TaHeR, and slows back proton transfer to the retinal Schiff base (M decay) during its photocycle. Zn2+-binding was similarly observed for a TaHeR opsin that lacks the retinal chromophore. We then studied the Zn2+-binding site by means of the ATR-FTIR spectroscopy of site-directed mutants. Among five and four mutants of His and Asp/Glu, respectively, only E150Q exhibited a completely different spectral feature of the α-helix (amide-I) in ATR-FTIR spectroscopy, suggesting that E150 is responsible for Zn2+-binding. Molecular dynamics (MD) simulations built a coordination structure of Zn2+-bound TaHeR, where E150 and protein bound water molecules participate in direct coordination. It was concluded that the specific binding site of Zn2+ is located at the cytoplasmic side of TaHeR, and that Zn2+-binding affects the structure and structural dynamics, possibly modifying the unknown function of TaHeR.


Assuntos
Prótons , Rodopsinas Microbianas , Rodopsinas Microbianas/química , Sítios de Ligação , Zinco
17.
Biochemistry ; 61(23): 2698-2708, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399519

RESUMO

The proton transfer reaction belongs to one of the key triggers for the functional expression of membrane proteins. Rod and cone opsins are light-sensitive G-protein-coupled receptors (GPCRs) that undergo the cis-trans isomerization of the retinal chromophore in response to light. The isomerization event initiates a conformational change in the opsin protein moiety, which propagates the downstream effector signaling. The final step of receptor activation is the deprotonation of the retinal Schiff base, a proton transfer reaction which has been believed to be identical among the cone opsins. Here, we report an unexpected proton transfer reaction occurring in the early photoreaction process of primate blue-sensitive pigment (MB). By using low-temperature UV-visible spectroscopy, we found that the Lumi intermediate of MB formed in transition from the BL intermediate shows an absorption maximum in the UV region, indicating the deprotonation of the retinal Schiff base. Comparison of the light-induced difference FTIR spectra of Batho, BL, and Lumi showed significant α-helical backbone C=O stretching and protonated carboxylate C=O stretching vibrations only in the Lumi intermediate. The transition from BL to Lumi thus involves dramatic changes in protein environment with a proton transfer reaction between the Schiff base and the counterion resulting in an absorption maximum in the UV region.


Assuntos
Opsinas dos Cones , Pigmentos da Retina , Animais , Pigmentos da Retina/química , Prótons , Bases de Schiff/química , Primatas/metabolismo , Retinaldeído/química , Rodopsina/química
18.
Biochemistry ; 61(18): 1936-1944, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36007110

RESUMO

Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified as blue-absorbing PRs (BPR; λmax ∼ 490 nm) and green-absorbing PRs (GPR; λmax ∼ 525 nm). We previously converted BPR into GPR using an anomalous pH effect, which was achieved by an irreversible process at around pH 2. Recent size-exclusion chromatography (SEC) and atomic force microscopy (AFM) analyses of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect owing to the irreversible transition from pentamer to monomer. Different pKa values of the Schiff base counterion between pentamer and monomer lead to different colors at the same pH. Here, we incorporate systematic mutation into VcBPR and examine the anomalous pH effect. The anomalous pH effect was observed for the mutants of key residues near the retinal chromophore such as D76N, D206N, and Q84L, indicating that the Schiff base counterions and the L/Q switch do not affect the irreversible transition from pentamer to monomer at pH ∼ 2. We then focus on the two specific interactions at the intermonomer interface in a pentamer, E29/R30/D31 and W13/H54. Single mutants such as E29Q, R30A, W13A, and H54A and the wild type (WT) exhibited an anomalous pH effect. In contrast, the anomalous pH effect was lost for E29Q/H54A, R30A/H54A, and W13A/E29Q. Size-exclusion chromatography (SEC) and atomic force microscopy (AFM) measurements showed monomer forms in the original states of the double mutants, being a clear contrast to the pentamer forms of all single mutants in the original states. It was concluded that the pentamer structure of VcBPR was stabilized by an electrostatic interaction in the E29/R30/D31 region and a hydrogen-bonding interaction in the W13/H54 region, which was disrupted at pH 2 and converted into monomers.


Assuntos
Rodopsina , Bases de Schiff , Hidrogênio , Concentração de Íons de Hidrogênio , Bombas de Próton , Rodopsina/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Bases de Schiff/química , Sulfonamidas
19.
Metab Eng ; 72: 227-236, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35346842

RESUMO

In microbial fermentative production, ATP regeneration, while crucial for cellular processes, conflicts with efficient target chemical production because ATP regeneration exhausts essential carbon sources also required for target chemical biosynthesis. To wrestle with this dilemma, we harnessed the power of microbial rhodopsins with light-driven proton pumping activity to supplement with ATP, thereby facilitating the bioproduction of various chemicals. We first demonstrated a photo-driven ATP supply and redistribution of metabolic carbon flows to target chemical synthesis by installing already-known delta rhodopsin (dR) in Escherichia coli. In addition, we identified novel rhodopsins with higher proton pumping activities than dR, and created an engineered cell for in vivo self-supply of the rhodopsin-activator, all-trans-retinal. Our concept exploiting the light-powering ATP supplier offers a potential increase in carbon use efficiency for microbial productions through metabolic reprogramming.


Assuntos
Bombas de Próton , Rodopsina , Trifosfato de Adenosina/genética , Carbono/metabolismo , Luz , Optogenética , Bombas de Próton/química , Bombas de Próton/genética , Bombas de Próton/metabolismo , Prótons , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo , Rodopsinas Microbianas/genética
20.
Angew Chem Int Ed Engl ; 61(33): e202203149, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749139

RESUMO

Recent discoveries of light-driven inward proton-pumping rhodopsins have opened new avenues to exploring the mechanism of unidirectional transport because these proteins transport protons in the opposite direction to conventional proton-pumping rhodopsins, despite their similar protein structure and membrane topology. Schizorhodopsin (SzR) is a newly discovered rhodopsin family of light-driven inward proton pumps. Here, we report time-resolved resonance Raman spectra showing that cis-trans thermal reisomerization precedes reprotonation at the Schiff base of the retinal chromophore in the photocycle of SzR AM_5_00977. This sequence has not been observed for the photocycles of conventional proton-pumping rhodopsins, in which reisomerization follows reprotonation, and thus provides insights into the mechanism of proton uptake to the chromophore during inward proton pumping. The present findings are expected to contribute to controlling the direction of proton transport in engineered proteins.


Assuntos
Bombas de Próton , Prótons , Transporte de Íons , Bombas de Próton/química , Rodopsina/química , Bases de Schiff
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA