Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2320129121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377195

RESUMO

Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis. Spermatogenesis involves a continuous series of self-renewal and differentiation programs of spermatogonial stem cells (SSCs) that is regulated by retinoic acid (RA)-dependent activation of receptors (RARs), which control target gene expression through association with corepressor proteins. We have found that the interaction between RAR and the corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) is essential for spermatogenesis. In a genetically engineered mouse model that negates SMRT-RAR binding (SMRTmRID mice), the synchronized, cyclic expression of RAR-dependent genes along the seminiferous tubules is disrupted. Notably, the presence of an RA-resistant SSC population that survives RAR de-repression suggests that the infertility attributed to the loss of SMRT-mediated repression is reversible. Supporting this notion, we show that inhibiting the action of the SMRT complex with chronic, low-dose oral administration of a histone deacetylase inhibitor reversibly blocks spermatogenesis and fertility without affecting libido. This demonstration validates pharmacologic targeting of the SMRT repressor complex for non-hormonal male contraception.


Assuntos
Proteínas de Ligação a DNA , Proteínas Repressoras , Humanos , Feminino , Masculino , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Correpressoras/genética , Correpressor 2 de Receptor Nuclear/genética , Tretinoína/farmacologia , Anticoncepção , Correpressor 1 de Receptor Nuclear
2.
FASEB J ; 38(14): e23842, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037554

RESUMO

G-protein-coupled receptors (GPCRs) belonging to the type 2 taste receptors (TAS2Rs) family are predominantly present in taste cells to allow the perception of bitter-tasting compounds. TAS2Rs have also been shown to be expressed in human airway smooth muscle (ASM), and TAS2R agonists relax ASM cells and bronchodilate airways despite elevating intracellular calcium. This calcium "paradox" (calcium mediates contraction by pro-contractile Gq-coupled GPCRs) and the mechanisms by which TAS2R agonists relax ASM remain poorly understood. To gain insight into pro-relaxant mechanisms effected by TAS2Rs, we employed an unbiased phosphoproteomic approach involving dual-mass spectrometry to determine differences in the phosphorylation of contractile-related proteins in ASM following the stimulation of cells with TAS2R agonists, histamine (an agonist of the Gq-coupled H1 histamine receptor) or isoproterenol (an agonist of the Gs-coupled ß2-adrenoceptor) alone or in combination. Our study identified differential phosphorylation of proteins regulating contraction, including A-kinase anchoring protein (AKAP)2, AKAP12, and RhoA guanine nucleotide exchange factor (ARHGEF)12. Subsequent signaling analyses revealed RhoA and the T853 residue on myosin light chain phosphatase (MYPT)1 as points of mechanistic divergence between TAS2R and Gs-coupled GPCR pathways. Unlike Gs-coupled receptor signaling, which inhibits histamine-induced myosin light chain (MLC)20 phosphorylation via protein kinase A (PKA)-dependent inhibition of intracellular calcium mobilization, HSP20 and ERK1/2 activity, TAS2Rs are shown to inhibit histamine-induced pMLC20 via inhibition of RhoA activity and MYPT1 phosphorylation at the T853 residue. These findings provide insight into the TAS2R signaling in ASM by defining a distinct signaling mechanism modulating inhibition of pMLC20 to relax contracted ASM.


Assuntos
Músculo Liso , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Fosforilação , Relaxamento Muscular/efeitos dos fármacos , Histamina/metabolismo , Histamina/farmacologia , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Isoproterenol/farmacologia , Cálcio/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Paladar/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais , Células Cultivadas
3.
J Lipid Res ; 65(3): 100507, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272355

RESUMO

Finasteride is commonly prescribed to treat benign prostate hyperplasia and male-pattern baldness in cis men and, more recently, trans individuals. However, the effect of finasteride on cardiovascular disease remains elusive. We evaluated the role of finasteride on atherosclerosis using low-density lipoprotein (LDL) receptor-deficient (Ldlr-/-) mice. Next, we examined the relevance to humans by analyzing the data deposited between 2009 and 2016 in the National Health and Nutrition Examination Survey. We show that finasteride reduces total plasma cholesterol and delays the development of atherosclerosis in Ldlr-/- mice. Finasteride reduced monocytosis, monocyte recruitment to the lesion, macrophage lesion content, and necrotic core area, the latter of which is an indicator of plaque vulnerability in humans. RNA sequencing analysis revealed a downregulation of inflammatory pathways and an upregulation of bile acid metabolism, oxidative phosphorylation, and cholesterol pathways in the liver of mice taking finasteride. Men reporting the use of finasteride showed lower plasma levels of cholesterol and LDL-cholesterol than those not taking the drug. Our data unveil finasteride as a potential treatment to delay cardiovascular disease in people by improving the plasma lipid profile.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Masculino , Animais , Camundongos , Finasterida/farmacologia , Finasterida/uso terapêutico , Inquéritos Nutricionais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Receptores de LDL/genética , Camundongos Knockout
4.
Artigo em Inglês | MEDLINE | ID: mdl-39146178

RESUMO

BACKGROUND: Preliminary evidence suggests that people with schizophrenia have decreased relative abundance of butyrate-producing bacteria in the gut microbiota. Butyrate plays a critical role in maintaining the integrity of the gut-blood barrier and has a number of anti-inflammatory effects. This proof-of-concept study was designed to assess whether the addition of the oligofructose-enriched inulin (OEI) prebiotic: Prebiotin could increase the production of butyrate. METHODS: Twenty-seven people who met the criteria for either Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, schizophrenia or schizoaffective disorder were entered into a 10-day, double-blind, placebo-controlled, randomized clinical trial. The study was conducted on an inpatient unit to standardize the participant diet and environment. Participants were randomized to either OEI (4 g, 3 times a day) or a placebo (4 g of maltodextrin, 3 times a day). In order to assess the effect of OEI treatment on butyrate levels, participants underwent pretreatment and posttreatment OEI challenges. The primary outcome measure was relative change in postchallenge plasma butyrate levels after 10 days of OEI treatment. RESULTS: In both the intent-to-treat and completer analyses, OEI treatment was associated with a greater number of participants who met the OEI challenge responder criteria than those treated with placebo. OEI treatment was also associated with an increase in baseline butyrate levels (effect size for the group difference in the change of baseline butyrate levels was 0.58). CONCLUSIONS: We were able to demonstrate that treatment with the prebiotic OEI selectively increased the level of plasma butyrate in people with schizophrenia.Trial registration:ClinicalTrials.gov identifier NCT03617783.

5.
Oral Dis ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121459

RESUMO

OBJECTIVE: Electronic cigarette (e-cigarette) use among adults in the United States continues to rise. Particularly concerning is the impact of e-cigarette aerosol inhalation on the oral mucosa. Aerosols are derived from a heated e-liquid base of propylene glycol/glycerin (PG/G) often mixed with nicotine and chemical flavors. Of note, harmful and potentially harmful constituents (HPHCs), including metals and volatile organic compounds, have been detected in e-cigarette aerosols. It remains unknown, however, whether aerosols exclusively derived from e-liquid PG/G are detrimental to oral keratinocytes. The present study analyzed toxicological outcomes in normal oral keratinocytes exposed to model nicotine-free, unflavored PG/G e-liquid aerosols. MATERIALS AND METHODS: Cell viability/cytotoxicity, genotoxicity, and immunoblotting assays were conducted in NOKSI, a gingiva-derived oral keratinocyte cell line, following exposure to model e-liquid aerosols or non-aerosolized controls. The HPHC acrolein, reported to form DNA adducts in the buccal mucosa from e-cigarette users, was also used in similar assays. RESULTS: PG/G e-liquid aerosol extracts significantly enhanced cytotoxic and DNA damaging responses in NOKSI cells when compared to non-aerosolized e-liquid treatment. Acrolein treatment led to similar results. CONCLUSIONS: The aerosolization process of PG/G e-liquid is a critical determinant of marked cytotoxic and genotoxic stimuli in oral keratinocytes.

6.
Angew Chem Int Ed Engl ; 63(27): e202401003, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38808693

RESUMO

The gasotransmitter hydrogen sulfide (H2S) is thought to be involved in the post-translational modification of cysteine residues to produce reactive persulfides. A persulfide-specific chemoselective proteomics approach with mammalian cells has identified a broad range of zinc finger (ZF) proteins as targets of persulfidation. Parallel studies with isolated ZFs show that persulfidation is mediated by ZnII, O2, and H2S, with intermediates involving oxygen- and sulfur-based radicals detected by mass spectrometry and optical spectroscopies. A small molecule ZnII complex exhibits analogous reactivity with H2S and O2, giving a persulfidated product. These data show that ZnII is not just a biological structural element, but also plays a critical role in mediating H2S-dependent persulfidation. ZF persulfidation appears to be a general post-translational modification and a possible conduit for H2S signaling. This work has implications for our understanding of H2S-mediated signaling and the regulation of ZFs in cellular physiology and development.


Assuntos
Sulfeto de Hidrogênio , Proteômica , Sulfetos , Dedos de Zinco , Zinco , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Zinco/química , Humanos , Sulfetos/química , Processamento de Proteína Pós-Traducional
7.
ACS Omega ; 9(12): 14381-14387, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559916

RESUMO

Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein whose expression has been previously implicated in cancer metastasis. However, the exact molecular mechanisms by which PTGFRN influences cancer progression are still unknown. As such, our laboratory set out to investigate how PTGFRN knockdown affected the expression of other proteins. We also carried out coimmunoprecipitation experiments using a monoclonal anti-PTGFRN antibody. We employed mass spectrometry-based proteomics for both experiments to identify proteins that were associated with PTGFRN. Our data show that PTGFRN knockdown increased pathways related to innate immune responses and decreased pathways associated with the synthesis of metabolic precursors and protein processing, among others. Additionally, the coimmunoprecipitation experiments indicated that PTGFRN is associated with proteins involved in processing and metabolism, as well as VEGF signaling molecules. These results highlight the role of PTGFRN as a protein processing regulator, which may be influencing cancer progression.

8.
mBio ; 15(3): e0276323, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319089

RESUMO

Pseudomonas aeruginosa is a versatile opportunistic pathogen requiring iron for its survival and virulence within the host. The ability to switch to heme as an iron source and away from siderophore uptake provides an advantage in chronic infection. We have recently shown the extracellular heme metabolites biliverdin IXß (BVIXß) and BVIXδ positively regulate the heme-dependent cell surface signaling cascade. We further investigated the role of BVIXß and BVIXδ in cell signaling utilizing allelic strains lacking a functional heme oxygenase (hemOin) or one reengineered to produce BVIXα (hemOα). Compared to PAO1, both strains show a heme-dependent growth defect, decreased swarming and twitching, and less robust biofilm formation. Interestingly, the motility and biofilm defects were partially rescued on addition of exogenous BVIXß and BVIXδ. Utilizing liquid chromatography-tandem mass spectrometry, we performed a comparative proteomics and metabolomics analysis of PAO1 versus the allelic strains in shaking and static conditions. In shaking conditions, the hemO allelic strains showed a significant increase in proteins involved in quorum sensing, phenazine production, and chemotaxis. Metabolite profiling further revealed increased levels of Pseudomonas quinolone signal and phenazine metabolites. In static conditions, we observed a significant repression of chemosensory pathways and type IV pili biogenesis proteins as well as several phosphodiesterases associated with biofilm dispersal. We propose BVIX metabolites function as signaling and chemotactic molecules integrating heme utilization as an iron source into the adaptation of P. aeruginosa from a planktonic to sessile lifestyle. IMPORTANCE: The opportunistic pathogen Pseudomonas aeruginosa causes long-term chronic infection in the airways of cystic fibrosis patients. The ability to scavenge iron and to establish chronic infection within this environment coincides with a switch to utilize heme as the primary iron source. Herein, we show the heme metabolites biliverdin beta and delta are themselves important signaling molecules integrating the switch in iron acquisition systems with cooperative behaviors such as motility and biofilm formation that are essential for long-term chronic infection. These significant findings will enhance the development of viable multi-targeted therapeutics effective against both heme utilization and cooperative behaviors essential for survival and persistence within the host.


Assuntos
Heme , Pseudomonas aeruginosa , Humanos , Heme/metabolismo , Pseudomonas aeruginosa/metabolismo , Biliverdina/metabolismo , Proteínas de Bactérias/metabolismo , Infecção Persistente , Ferro/metabolismo , Fenazinas/metabolismo
9.
Ann Med ; 56(1): 2315224, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38353210

RESUMO

BACKGROUND: Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection is associated with significant gut damage, similar to that observed in patients with inflammatory bowel disease (IBD). This pathology includes loss of epithelial integrity, microbial translocation, dysbiosis, and resultant chronic immune activation. Additionally, the levels of all-trans-retinoic acid (atRA) are dramatically attenuated. Data on the therapeutic use of anti-α4ß7 antibodies has shown promise in patients with ulcerative colitis and Crohn's disease. Recent evidence has suggested that the microbiome and short-chain fatty acid (SCFA) metabolites it generates may be critical for anti-α4ß7 efficacy and maintaining intestinal homeostasis. MATERIALS AND METHODS: To determine whether the microbiome contributes to gut homeostasis after anti-α4ß7 antibody administered to SIV-infected rhesus macaques, faecal SCFA concentrations were determined, 16S rRNA sequencing was performed, plasma viral loads were determined, plasma retinoids were measured longitudinally, and gut retinoid synthesis/response gene expression was quantified. RESULTS: Our results suggest that anti-α4ß7 antibody facilitates the return of retinoid metabolism to baseline levels after SIV infection. Furthermore, faecal SCFAs were shown to be associated with retinoid synthesis gene expression and rebound viral loads after therapy interruption. CONCLUSIONS: Taken together, these data demonstrate the therapeutic advantages of anti-α4ß7 antibody administration during HIV/SIV infection and that the efficacy of anti-α4ß7 antibody may depend on microbiome composition and SCFA generation.


Assuntos
Infecções por HIV , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , Macaca mulatta/genética , Macaca mulatta/metabolismo , RNA Ribossômico 16S/genética , Integrinas/metabolismo , Integrinas/uso terapêutico , Retinoides/uso terapêutico
10.
Cell Transplant ; 33: 9636897241242624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600801

RESUMO

Xenografts of human skeletal muscle generated in mice can be used to study muscle pathology and to test drugs designed to treat myopathies and muscular dystrophies for their efficacy and specificity in human tissue. We previously developed methods to generate mature human skeletal muscles in immunocompromised mice starting with human myogenic precursor cells (hMPCs) from healthy individuals and individuals with facioscapulohumeral muscular dystrophy (FSHD). Here, we examine a series of alternative treatments at each stage in order to optimize engraftment. We show that (i) X-irradiation at 25Gy is optimal in preventing regeneration of murine muscle while supporting robust engraftment and the formation of human fibers without significant murine contamination; (ii) hMPC lines differ in their capacity to engraft; (iii) some hMPC lines yield grafts that respond better to intermittent neuromuscular electrical stimulation (iNMES) than others; (iv) some lines engraft better in male than in female mice; (v) coinjection of hMPCs with laminin, gelatin, Matrigel, or Growdex does not improve engraftment; (vi) BaCl2 is an acceptable replacement for cardiotoxin, but other snake venom preparations and toxins, including the major component of cardiotoxin, cytotoxin 5, are not; and (vii) generating grafts in both hindlimbs followed by iNMES of each limb yields more robust grafts than housing mice in cages with running wheels. Our results suggest that replacing cardiotoxin with BaCl2 and engrafting both tibialis anterior muscles generates robust grafts of adult human muscle tissue in mice.


Assuntos
Cardiotoxinas , Distrofia Muscular Facioescapuloumeral , Adulto , Humanos , Masculino , Camundongos , Feminino , Animais , Xenoenxertos , Transplante Heterólogo , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/patologia
11.
PLoS One ; 19(4): e0301447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557762

RESUMO

Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.


Assuntos
Furilfuramida , Tretinoína , Humanos , Receptores X de Retinoides/genética , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Ligantes , Tretinoína/farmacologia , Tretinoína/metabolismo , Epiderme/metabolismo , Receptores Citoplasmáticos e Nucleares
12.
Sci Rep ; 14(1): 10733, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730024

RESUMO

Molecular responses to alcohol consumption are dynamic, context-dependent, and arise from a complex interplay of biological and external factors. While many have studied genetic risk associated with drinking patterns, comprehensive studies identifying dynamic responses to pharmacologic and psychological/placebo effects underlying binge drinking are lacking. We investigated transcriptome-wide response to binge, medium, and placebo alcohol consumption by 17 healthy heavy social drinkers enrolled in a controlled, in-house, longitudinal study of up to 12 days. Using RNA-seq, we identified 251 and 13 differentially expressed genes (DEGs) in response to binge drinking and placebo, respectively. Eleven protein-coding DEGs had very large effect sizes in response to binge drinking (Cohen's d > 1). Furthermore, binge dose significantly impacted the Cytokine-cytokine receptor interaction pathway (KEGG: hsa04060) across all experimental sequences. Placebo also impacted hsa04060, but only when administered following regular alcohol drinking sessions. Similarly, medium-dose and placebo commonly impacted KEGG pathways of Systemic lupus erythematosus, Neutrophil extracellular trap formation, and Alcoholism based on the sequence of drinking sessions. These findings together indicate the "dose-extending effects" of placebo at a molecular level. Furthermore, besides supporting alcohol dose-specific molecular changes, results suggest that the placebo effects may induce molecular responses within the same pathways regulated by alcohol.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Perfilação da Expressão Gênica , Efeito Placebo , Transcriptoma , Humanos , Consumo Excessivo de Bebidas Alcoólicas/sangue , Consumo Excessivo de Bebidas Alcoólicas/genética , Masculino , Feminino , Adulto , Adulto Jovem , Etanol , Estudos Longitudinais , Regulação da Expressão Gênica/efeitos dos fármacos
13.
Blood Adv ; 8(15): 3880-3892, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739710

RESUMO

ABSTRACT: Provirus integration site for Moloney murine leukemia virus (PIM) family serine/threonine kinases perform protumorigenic functions in hematologic malignancies and solid tumors by phosphorylating substrates involved in tumor metabolism, cell survival, metastasis, inflammation, and immune cell invasion. However, a comprehensive understanding of PIM kinase functions is currently lacking. Multiple small-molecule PIM kinase inhibitors are currently being evaluated as cotherapeutics in patients with cancer. To further illuminate PIM kinase functions in cancer, we deeply profiled PIM1 substrates using the reverse in-gel kinase assay to identify downstream cellular processes targetable with small molecules. Pathway analyses of putative PIM substrates nominated RNA splicing and ribosomal RNA (rRNA) processing as PIM-regulated cellular processes. PIM inhibition elicited reproducible splicing changes in PIM-inhibitor-responsive acute myeloid leukemia (AML) cell lines. PIM inhibitors synergized with splicing modulators targeting splicing factor 3b subunit 1 (SF3B1) and serine-arginine protein kinase 1 (SRPK1) to kill AML cells. PIM inhibition also altered rRNA processing, and PIM inhibitors synergized with an RNA polymerase I inhibitor to kill AML cells and block AML tumor growth. These data demonstrate that deep kinase substrate knowledge can illuminate unappreciated kinase functions, nominating synergistic cotherapeutic strategies. This approach may expand the cotherapeutic armamentarium to overcome kinase inhibitor-resistant disease that limits durable responses in malignant disease.


Assuntos
Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Humanos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Camundongos , Animais , Linhagem Celular Tumoral , Especificidade por Substrato , Splicing de RNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA