Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 74(1): e12835, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36214640

RESUMO

N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.


Assuntos
Colite , Melatonina , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Heme Oxigenase-1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Anti-Inflamatórios/uso terapêutico
2.
Mol Pharm ; 19(11): 3784-3794, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36043999

RESUMO

Riluzole (RLZ) is a neuroprotective drug indicated for amyotrophic lateral sclerosis. To examine the feasibility of RLZ for repositioning as an anti-inflammatory bowel disease (IBD) drug, RLZ (2, 5, and 10 mg/kg) was administered orally to rats with colitis induced by 2,4-dinitrobenzenesulfonic acid. Oral RLZ was effective against rat colitis in a dose-dependent manner, which was statistically significant at doses over 5 mg/kg. To address safety issues upon repositioning and further improve anti-colitic effectiveness, RLZ was coupled with salicylic acid (SA) via an azo-bond to yield RLZ-azo-SA (RAS) for the targeted colonic delivery of RLZ. Upon oral gavage, RAS (oral RAS) was efficiently delivered to and activated to RLZ in the large intestine, and systemic absorption of RLZ was substantially reduced. Oral RAS ameliorated colonic damage and inflammation in rat colitis and was more effective than oral RLZ and sulfasalazine, a current anti-IBD drug. Moreover, oral RAS potently inhibited glycogen synthase kinase 3ß (GSK3ß) in the inflamed distal colon, leading to the suppression of NFκB activity and an increase in the level of the anti-inflammatory cytokine interleukin-10. Taken together, RAS, which enables RLZ to be delivered to and inhibit GSK3ß in the inflamed colon, may facilitate repositioning of RLZ as an anti-IBD drug.


Assuntos
Colite , Pró-Fármacos , Ratos , Animais , Pró-Fármacos/química , Riluzol/uso terapêutico , Riluzol/farmacologia , Reposicionamento de Medicamentos , Ratos Sprague-Dawley , Glicogênio Sintase Quinase 3 beta , Colo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Anti-Inflamatórios/química
3.
Pharmacol Rep ; 75(1): 211-221, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36508076

RESUMO

BACKGROUND: Chloroquine (CQ) is an effective and safe antimalarial drug that is also used as a disease-modifying antirheumatic drug. Recent studies have shown that CQ can sensitize cancer cells to anti-cancer therapies. METHODS: In this study, we investigated the molecular mechanisms underlying CQ-mediated chemosensitization in human colon carcinoma cells. RESULTS: CQ prevented hypoxia-inducible factor (HIF)-1α protein induction in human colon carcinoma cells. CQ also suppressed HIF-1 activity, as represented by CQ inhibition of HIF-1-dependent luciferase activity and reduced induction of vascular endothelial growth factor. Under hypoxia, CQ restricted HIF-1α synthesis but did not affect HIF-1α transcription and protein stability. The hypoxic state activated ataxia telangiectasia and Rad3-related (ATR) kinase and increased the level of phosphorylated checkpoint kinase 1, a substrate of ATR kinase; however, this was prevented by CQ. An ATR kinase inhibitor suppressed the hypoxic induction of HIF-1α protein and was as effective as CQ. The cytotoxicity of 5-fluorouracil (5-FU), the first choice for the treatment of colorectal cancer, was attenuated under hypoxia. CQ enhanced the cytotoxicity of 5-FU treatment, which was mimicked by the transient transfection with HIF-1α siRNA. CONCLUSIONS: Under hypoxia, CQ-mediated sensitization of colon carcinoma HCT116 cells to 5-FU involves HIF-1 inhibition via ATR kinase suppression.


Assuntos
Carcinoma , Neoplasias do Colo , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Cloroquina/farmacologia , Neoplasias do Colo/metabolismo , Fluoruracila , Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Pharmaceutics ; 15(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004616

RESUMO

In our previous study, riluzole azo-linked to salicylic acid (RAS) was prepared as a colon-targeted prodrug of riluzole (RLZ) to facilitate the repositioning of RLZ as an anticolitic drug. RAS is more effective against rat colitis than RLZ and sulfasalazine, currently used as an anti-inflammatory bowel disease drug. The aim of this study is to further improve colon specificity, anticolitic potency, and safety of RAS. N-succinylaspart-1-ylRLZ (SAR) and N-succinylglutam-1-ylRLZ (SGR) were synthesized and evaluated as a "me-better" colon-targeted prodrug of RLZ against rat colitis. SAR but not SGR was converted to RLZ in the cecal contents, whereas both conjugates remained intact in the small intestine. When comparing the colon specificity of SAR with that of RAS, the distribution coefficient and cell permeability of SAR were lower than those of RAS. In parallel, oral SAR delivered a greater amount of RLZ to the cecum of rats than oral RAS. In a DNBS-induced rat model of colitis, oral SAR mitigated colonic damage and inflammation and was more potent than oral RAS. Moreover, upon oral administration, SAR had a greater ability to limit the systemic absorption of RLZ than RAS, indicating a reduced risk of systemic side effects of SAR. Taken together, SAR may be a "me-better" colon-targeted prodrug of RLZ to improve the safety and anticolitic potency of RAS, an azo-type colon-targeted prodrug of RLZ.

5.
Front Pharmacol ; 14: 1095955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153778

RESUMO

As our previous study revealed that N-benzyl-N-methyldecan-1-amine (BMDA), a new molecule originated from Allium sativum, exhibits anti-neoplastic activities, we herein explored other functions of the compound and its derivative [decyl-(4-methoxy-benzyl)-methyl-amine; DMMA] including anti-inflammatory and anti-oxidative activities. Pretreatment of THP-1 cells with BMDA or DMMA inhibited tumor necrosis factor (TNF)-α and interleukin (IL)-1ß production, and blocked c-jun terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), MAPKAP kinase (MK)2 and NF-κΒ inflammatory signaling during LPS stimulation. Rectal treatment with BMDA or DMMA reduced the severity of colitis in 2,4-dinitrobenzenesulfonic acid (DNBS)-treated rat. Consistently, administration of the compounds decreased myeloperoxidase (MPO) activity (representing neutrophil infiltration in colonic mucosa), production of inflammatory mediators such as cytokine-induced neutrophil chemoattractant (CINC)-3 and TNF-α, and activation of JNK and p38 MAPK in the colon tissues. In addition, oral administration of these compounds ameliorated collagen-induced rheumatoid arthritis (RA) in mice. The treatment diminished the levels of inflammatory cytokine transcripts, and protected connective tissues through the expression of anti-oxidation proteins such as nuclear factor erythroid-related factor (Nrf)2 and heme oxygenase (HO)1. Additionally, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not differ between the BMDA- or DMMA-treated and control animals, indicating that the compounds do not possess liver toxicity. Taken together, these findings propose that BMDA and DMMA could be used as new drugs for curing inflammatory bowel disease (IBD) and RA.

6.
Pharmaceutics ; 14(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336057

RESUMO

Dapsone (DpS) is an antimicrobial and antiprotozoal agent, especially used to treat leprosy. The drug shares a similar mode of action with sulfonamides. Additionally, it possesses anti-inflammatory activity, useful for treating autoimmune diseases. Here, we developed a "me-better" alternative to sulfasalazine (SSZ), a colon-specific prodrug of mesalazine (5-ASA) used as an anti-inflammatory bowel diseases drug; DpS azo-linked with two molecules of 5-ASA (AS-DpS-AS) was designed and synthesized, and its colon specificity and anti-colitic activity were evaluated. AS-DpS-AS was converted to DpS and the two molecules of 5-ASA (up to approximately 87% conversion) within 24 h after incubation in the cecal contents. Compared to SSZ, AS-DpS-AS showed greater efficiency in colonic drug delivery following oral gavage. Simultaneously, AS-DpS-AS substantially limited the systemic absorption of DpS. In a dinitrobenzene sulfonic acid-induced rat colitis model, oral AS-DpS-AS elicited better efficacy against rat colitis than oral SSZ. Moreover, intracolonic treatment with DpS and/or 5-ASA clearly showed that combined treatment with DpS and 5-ASA was more effective against rat colitis than the single treatment with either DpS or 5-ASA. These results suggest that AS-DpS-AS may be a "me-better" drug of SSZ with higher therapeutic efficacy, owing to the combined anti-colitic effects of 5-ASA and DpS.

7.
Pharmaceutics ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36678670

RESUMO

We designed colon-targeted trans-cinnamic acid (tCA) and synthesized its conjugates with glutamic acid (tCA-GA) and aspartic acid (tCA-AA). We evaluated the anti-colitic activity of colon-targeted tCA using a dinitrobenzenesulfonic acid-induced rat colitis model. The conjugates lowered the distribution coefficient and Caco-2 cell permeability of tCA and converted to tCA in the cecum, with higher rates and percentages with tCA-GA than with tCA-AA. Following oral gavage, tCA-GA delivered a higher amount of tCA to the cecum and exhibited better anti-colitic effects than tCA and sulfasalazine (SSZ), which is the current treatment for inflammatory bowel disease. In the cellular assay, tCA acted as a full agonist of GPR109A (EC50: 530 µM). The anti-colitic effects of tCA-GA were significantly compromised by the co-administration of the GPR109A antagonist, mepenzolate. Collectively, colon-targeted tCA potentiated the anti-colitic activity of tCA by effectively activating GPR109A in the inflamed colon, enabling tCA to elicit therapeutic superiority over SSZ.

8.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34832874

RESUMO

Tranilast (TRL), a synthetic derivative of a tryptophan metabolite, is an anti-allergic drug used to treat bronchial asthma. We investigated how TRL activated the nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)-hemeoxygenase-1 (HO-1) pathway based on the electrophilic chemistry of the drug and whether TRL activity contributed to the treatment of rat colitis. In human colon carcinoma cells, TRL activated Nrf2, as represented by an increase in nuclear Nrf2 and induction of Nrf2-dependent luciferase and, subsequently, HO-1, a target gene product of Nrf2. TRL activation of Nrf2 and induction of HO-1 were completely prevented by chemical reduction of the electrophilic functional group (α, ß-unsaturated carbonyl group) in the drug. In parallel, TRL was reactive with the nucleophilic thiol group in N-acetylcysteine, forming a covalent adduct. Moreover, TRL, but not reduced TRL, binds to Kelch-like ECH-associated protein 1 (KEAP1), releasing Nrf2. TRL administration ameliorated colonic damage and inflammation in rats with dinitrobenzene sulfonic acid-induced colitis, which was partly compromised by the chemical reduction of TRL or co-treatment with an HO-1 inhibitor. Our results suggest that TRL activated the Nrf2-HO-1 pathway via covalent binding to KEAP1, partly contributing to TRL amelioration in rat colitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA