Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Microb Ecol ; 86(2): 1050-1059, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36151339

RESUMO

Research on niche specialization in the microbial communities of ammonia oxidizers is important for assessing the consequences of vegetation shift on nitrogen (N) cycling. In this study, soils were sampled from three tree stands (needleleaf, mixed, and evergreen broadleaf) from the Hannam experimental forest in South Korea in spring (May 2019), summer (August 2019), autumn (November 2019), and winter (January 2020). Quantitative polymerase chain reaction (qPCR) and high-throughput sequencing were used to measure the abundance and community structure of various nitrifiers: ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) as well as complete ammonia oxidizers (comammox). Nitrification rates and total ammonia oxidizer abundance were significantly higher in needleleaf forest soil than those in other forest stands, and they were lowest in evergreen broadleaf forest soil. Comammox clade B was most abundant in needleleaf and evergreen broadleaf forest soils, while AOA were significantly more abundant in mixed forest soil. The abundances of comammox clade B and AOA were negatively correlated with dissolved organic carbon. Phylogenetic analysis showed that NT-alpha and NS-gamma-2.3.2 were the most abundant AOA lineages in all the samples. The seasonal of AOA, AOB, and comammox varied with the sites, suggesting the need to examine the combinations of environmental factors when considering the effects of seasonal changes in the environment. Overall, the results suggest that potential vegetation shifts in forest ecosystems might affect nitrification activities by regulating the abundance and community structure of ammonia oxidizers.


Assuntos
Nitrificação , Solo , Solo/química , Ecossistema , Amônia , Filogenia , Oxirredução , Microbiologia do Solo , Archaea , Florestas
2.
Environ Sci Technol ; 57(6): 2647-2659, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719133

RESUMO

CH4 emission in the Arctic has large uncertainty due to the lack of mechanistic understanding of the processes. CH4 oxidation in Arctic soil plays a critical role in the process, whereby removal of up to 90% of CH4 produced in soils by methanotrophs can occur before it reaches the atmosphere. Previous studies have reported on the importance of rising temperatures in CH4 oxidation, but because the Arctic is typically an N-limited system, fewer studies on the effects of inorganic nitrogen (N) have been reported. However, climate change and an increase of available N caused by anthropogenic activities have recently been reported, which may cause a drastic change in CH4 oxidation in Arctic soils. In this study, we demonstrate that excessive levels of available N in soil cause an increase in net CH4 emissions via the reduction of CH4 oxidation in surface soil in the Arctic tundra. In vitro experiments suggested that N in the form of NO3- is responsible for the decrease in CH4 oxidation via influencing soil bacterial and methanotrophic communities. The findings of our meta-analysis suggest that CH4 oxidation in the boreal biome is more susceptible to the addition of N than in other biomes. We provide evidence that CH4 emissions in Arctic tundra can be enhanced by an increase of available N, with profound implications for modeling CH4 dynamics in Arctic regions.


Assuntos
Nitrogênio , Solo , Nitrogênio/análise , Metano/análise , Tundra , Ecossistema , Regiões Árticas , Microbiologia do Solo
3.
Glob Chang Biol ; 28(18): 5453-5468, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35665574

RESUMO

Approximately 17% of the land worldwide is considered highly vulnerable to non-native plant invasion, which can dramatically alter nutrient cycles and influence greenhouse gas (GHG) emissions in terrestrial and wetland ecosystems. However, a systematic investigation of the impact of non-native plant invasion on GHG dynamics at a global scale has not yet been conducted, making it impossible to predict the exact biological feedback of non-native plant invasion to global climate change. Here, we compiled 273 paired observational cases from 94 peer-reviewed articles to evaluate the effects of plant invasion on GHG emissions and to identify the associated key drivers. Non-native plant invasion significantly increased methane (CH4 ) emissions from 129 kg CH4 ha-1  year-1 in natural wetlands to 217 kg CH4 ha-1  year-1 in invaded wetlands. Plant invasion showed a significant tendency to increase CH4 uptakes from 2.95 to 3.64 kg CH4 ha-1  year-1 in terrestrial ecosystems. Invasive plant species also significantly increased nitrous oxide (N2 O) emissions in grasslands from an average of 0.76 kg N2 O ha-1  year-1 in native sites to 1.35 kg N2 O ha-1  year-1 but did not affect N2 O emissions in forests or wetlands. Soil organic carbon, mean annual air temperature (MAT), and nitrogenous deposition (N_DEP) were the key factors responsible for the changes in wetland CH4 emissions due to plant invasion. The responses of terrestrial CH4 uptake rates to plant invasion were mainly driven by MAT, soil NH4 + , and soil moisture. Soil NO3 - , mean annual precipitation, and N_DEP affected terrestrial N2 O emissions in response to plant invasion. Our meta-analysis not only sheds light on the stimulatory effects of plant invasion on GHG emissions from wetland and terrestrial ecosystems but also improves our current understanding of the mechanisms underlying the responses of GHG emissions to plant invasion.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Carbono , Dióxido de Carbono/análise , Mudança Climática , Ecossistema , Espécies Introduzidas , Metano/análise , Nitrogênio , Óxido Nitroso/análise , Solo , Áreas Alagadas
4.
Microb Ecol ; 84(4): 945-957, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34725713

RESUMO

Terrestrial ecosystems are typically nitrogen (N) limited, but recent years have witnessed N enrichment in various soil ecosystems caused by human activities such as fossil fuel combustion and fertilizer application. This enrichment may alter microbial processes in soils in a way that would increase the emissions of methane (CH4) and nitrous oxide (N2O), thereby aggravating global climate change. This review focuses on the effects of N enrichment on methanogens and methanotrophs, which play a central role in the dynamics of CH4 at the global scale. We also address the effects of N enrichment on N2O, which is produced in soils mainly by nitrification and denitrification. Overall, N enrichment inhibits methanogenesis in pure culture experiments, while its effects on CH4 oxidation are more complicated. The majority of previous studies reported that N enrichment, especially NH4+ enrichment, inhibits CH4 oxidation, resulting in higher CH4 emissions from soils. However, both activation and neutral responses have also been reported, particularly in rice paddies and landfill sites, which is well reflected in our meta-analysis. In contrast, N enrichment substantially increases N2O emission by both nitrification and denitrification, which increases proportionally to the amount of N amended. Future studies should address the effects of N enrichment on the active microbes of those functional groups at multiple scales along with parameterization of microbial communities for the application to climate models at the global scale.


Assuntos
Gases de Efeito Estufa , Solo , Humanos , Ecossistema , Óxido Nitroso , Fertilizantes , Metano/análise , Dióxido de Carbono/análise
5.
Microb Ecol ; 83(2): 436-446, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34003315

RESUMO

Invasion of Spartina spp. in tidal salt marshes may affect the function and characteristics of the ecosystem. Previous studies reported that the invasion alters biogeochemical and microbial processes in marsh ecosystems, yet our knowledge of changing archaeal community due to the invasion is still limited, whereas archaeal communities play a pivotal role in biogeochemical cycles within highly reduced marsh soils. In this study, we aimed to illustrate the influences of the Spartina anglica invasion on soil archaeal community and the depth profile of the influences. The relative abundance of archaeal phyla demonstrated that the invasion substantially shifted the characteristics of tidal salt marsh from marine to terrestrial soil only in surface layer, while the influences indirectly propagated to the deeper soil layer. In particular, two archaeal phyla, Asgardaeota and Diapherotrites, were strongly influenced by the invasion, indicating a shift from marine to terrestrial archaeal communities. The shifts in soil characteristics spread to the deeper soil layer that results in indirect propagation of the influences of the invasion down to the deeper soil, which was underestimated in previous studies. The changes in the concentration of dissolved organic carbon and salinity were the substantial regulating factors for that. Therefore, changes in biogeochemical and microbial characteristics in the deep soil layer, which is below the root zone of the invasive plant, should be accounted for a more accurate illustration of the consequences of the invasion.


Assuntos
Solo , Áreas Alagadas , Archaea , Ecossistema , Espécies Introduzidas , Poaceae/fisiologia
6.
Microb Ecol ; 84(1): 168-181, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34498119

RESUMO

In Arctic soils, warming accelerates decomposition of organic matter and increases emission of greenhouse gases (GHGs), contributing to a positive feedback to climate change. Although microorganisms play a key role in the processes between decomposition of organic matter and GHGs emission, the effects of warming on temporal responses of microbial activity are still elusive. In this study, treatments of warming and precipitation were conducted from 2012 to 2018 in Cambridge Bay, Canada. Soils of organic and mineral layers were collected monthly from June to September in 2018 and analyzed for extracellular enzyme activities and bacterial community structures. The activity of hydrolases was the highest in June and decreased thereafter over summer in both organic and mineral layers. Bacterial community structures changed gradually over summer, and the responses were distinct depending on soil layers and environmental factors; water content and soil temperature affected the shift of bacterial community structures in both layers, whereas bacterial abundance, dissolved organic carbon, and inorganic nitrogen did so in the organic layer only. The activity of hydrolases and bacterial community structures did not differ significantly among treatments but among months. Our results demonstrate that temporal variations may control extracellular enzyme activities and microbial community structure rather than the small effect of warming over a long period in high Arctic soil. Although the effects of the treatments on microbial activity were minor, our study provides insight that microbial activity may increase due to an increase in carbon availability, if the growing season is prolonged in the Arctic.


Assuntos
Gases de Efeito Estufa , Microbiota , Regiões Árticas , Hidrolases , Solo/química , Microbiologia do Solo
7.
Mol Ecol ; 30(17): 4231-4244, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34214230

RESUMO

Although microorganisms are the very first colonizers of recently deglaciated soils even prior to plant colonization, the drivers and patterns of microbial community succession at early-successional stages remain poorly understood. The successional dynamics and assembly processes of bacterial and fungal communities were compared on a glacier foreland in the maritime Antarctic across the ~10-year soil-age gradient from bare soil to sparsely vegetated area. Bacterial communities shifted more rapidly than fungal communities in response to glacial retreat; species turnover (primarily the transition from glacier- to soil-favouring taxa) contributed greatly to bacterial beta diversity, but this pattern was less clear in fungi. Bacterial communities underwent more predictable (more deterministic) changes along the soil-age gradient, with compositional changes paralleling the direction of changes in soil physicochemical properties following deglaciation. In contrast, the compositional shift in fungal communities was less associated with changes in deglaciation-induced changes in soil geochemistry and most fungal taxa displayed mosaic abundance distribution across the landscape, suggesting that the successional dynamics of fungal communities are largely governed by stochastic processes. A co-occurrence network analysis revealed that biotic interactions between bacteria and fungi are very weak in early succession. Taken together, these results collectively suggest that bacterial and fungal communities in recently deglaciated soils are largely decoupled from each other during succession and exert very divergent trajectories of succession and assembly under different selective forces.


Assuntos
Micobioma , Solo , Regiões Antárticas , Bactérias/genética , Micobioma/genética , Microbiologia do Solo
8.
Microb Ecol ; 77(1): 201-216, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29922904

RESUMO

Arid ecosystems constitute 41% of land's surface and play an important role in global carbon cycle. In particular, biological soil crusts (BSC) are known to be a hotspot of carbon fixation as well as mineralization in arid ecosystems. However, little information is available on carbon decomposition and microbes in BSC and key controlling variables for microbial activities in arid ecosystems. The current study, carried out in South Mediterranean arid ecosystem, aimed to evaluate the effects of intact and removed cyanobacteria/lichen crusts on soil properties, soil enzyme activities, and microbial abundances (bacteria and fungi). We compared five different treatments (bare soil, soil with intact cyanobacteria, soil with cyanobacteria removed, soil with intact lichens, and soil with lichens removed) in four different soil layers (0-5, 5-10, 10-15, and 15-20 cm). Regardless of soil treatments, activities of hydrolases and water content increased with increasing soil depth. The presence of lichens increased significantly hydrolase activities, which appeared to be associated with greater organic matter, nitrogen, and water contents. However, phenol oxidase was mainly controlled by pH and oxygen availability. Neither fungal nor bacterial abundance exhibited a significant correlation with enzyme activities suggesting that soil enzyme activities are mainly controlled by edaphic and environmental conditions rather than source microbes. Interestingly, the presence of lichens reduced the abundance of bacteria of which mechanism is still to be investigated.


Assuntos
Clima Desértico , Ecossistema , Ativação Enzimática , Microbiota , Microbiologia do Solo , Solo/química , Bactérias/enzimologia , Bactérias/metabolismo , Biodiversidade , Carbono/metabolismo , Ciclo do Carbono , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Monitoramento Ambiental , Fungos/enzimologia , Fungos/metabolismo , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Líquens/crescimento & desenvolvimento , Líquens/metabolismo , Monofenol Mono-Oxigenase , Nitrogênio/metabolismo , Tunísia , Água
9.
Microb Ecol ; 75(3): 729-738, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28986657

RESUMO

Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of ß-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.


Assuntos
Microbiota/fisiologia , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/microbiologia , Microbiologia do Solo , Áreas Alagadas , Adaptação Biológica , Archaea/enzimologia , Archaea/genética , Archaea/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Chenopodiaceae/genética , Chenopodiaceae/microbiologia , Cyperaceae/genética , Cyperaceae/microbiologia , Desnitrificação/genética , Ativação Enzimática , Enzimas/genética , Enzimas/metabolismo , Ácidos Graxos/análise , Proteínas Fúngicas/genética , Fungos/enzimologia , Fungos/genética , Fungos/metabolismo , Dosagem de Genes , Metano/metabolismo , Fosfolipídeos/análise , Poaceae/genética , Poaceae/microbiologia , RNA Ribossômico 16S/genética , República da Coreia , Plantas Tolerantes a Sal/genética , Solo/química , Sulfitos/metabolismo
10.
Microb Ecol ; 76(3): 782-790, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29536132

RESUMO

The rapid expansion of Phragmites australis in brackish marshes of the East Coast of the USA has drawn much attention, because it may change vegetation diversity and ecosystem functions. In particular, higher primary production of Phragmites than that of other native species such as Spartina patens and Schoenoplectus americanus has been noted, suggesting possible changes in carbon storage potential in salt marshes. To better understand the long-term effect of the invasion of Phragmites on carbon storage, however, information on decomposition rates of soil organic matter is essential. To address this issue, we compared microbial enzyme activities and microbial functional gene abundances (fungi, laccase, denitrifier, and methanogens) in three depths of soils with three different plants in a brackish marsh in Maryland, USA. Laccase and phenol oxidase activities were measured to assess the decomposition potential of recalcitrant carbon while ß-glucosidase activity was determined as proxy for cellulose decomposition rate. Microbial activities near the surface (0-15 cm) were the highest in Spartina-community sites followed by Phragmites- and Schoenoplectus-community sites. A comparison of stable isotopic signatures (δ13C and δ15N) of soils and plant leaves suggests that deep organic carbon in the soils mainly originated from Spartina, and only the surface soils may have been influenced by Phragmites litter. In contrast, fungal, laccase, and denitrifier abundances determined by real-time qPCR exhibited no discernible patterns among the surface soils of the three vegetation types. However, the abundance of methanogens was higher in the deep Phragmites-community soil. Therefore, Phragmites invasion will accelerate CH4 emission by greater CH4 production in deep soils with abundant methanogens, although enzymatic mechanisms revealed the potential for larger C accumulation by Phragmites invasion in salt marshes in the east coast of the USA.


Assuntos
Bactérias/enzimologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/análise , Proteínas Fúngicas/análise , Fungos/enzimologia , Poaceae/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Espécies Introduzidas , Lacase/análise , Lacase/metabolismo , Monofenol Mono-Oxigenase/análise , Monofenol Mono-Oxigenase/metabolismo , Áreas Alagadas , beta-Glucosidase/análise , beta-Glucosidase/metabolismo
11.
Microb Ecol ; 74(3): 670-680, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28331950

RESUMO

Salt marshes are unique ecosystem of which a microbial community is expected to be affected by global climate change. In this study, by using T-RFLP analysis, quantitative PCR, and pyrosequencing, we comprehensively analyzed the microbial community structure responding to elevated CO2 (eCO2) and N addition in a salt marsh ecosystem subjected to CO2 manipulation and N addition for about 3 years. We focused on the genes of microbes relevant to N-cycling (denitrification and nitrification), CH4-flux (methanogens and methanotrophs), and S-cycling (sulfate reduction) considering that they are key functional groups involved in the nutrient cycle of salt marsh system. Overall, this study suggests that (1) eCO2 and N addition affect functional microbial community involved in greenhouse gas flux in salt marsh system. Specifically, the denitrification process may be facilitated, while the methanogenesis may be impeded due to the outcompeting of sulfate reduction by eCO2 and N. This implies that future global change may cause a probable change in GHGs flux and positive feedback to global climate change in salt marsh; (2) the effect of eCO2 and N on functional group seems specific and to contrast with each other, but the effect of single factor would not be compromised but complemented by combination of two factors. (3) The response of functional groups to eCO2 and/or N may be directly or indirectly related to the plant community and its response to eCO2 and/or N. This study provides new insights into our understanding of functional microbial community responses to eCO2 and/or N addition in a C3/C4 plant mixed salt marsh system.


Assuntos
Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Áreas Alagadas , Gases de Efeito Estufa/metabolismo , Maryland , Microbiota , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano
12.
Microb Ecol ; 72(3): 692-703, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27352281

RESUMO

The area of rice paddy fields has declined continuously in East Asian countries due to abandonment of agriculture and concurrent socioeconomic changes. When they are abandoned, rice paddy fields generally transform into wetlands by natural succession. While previous studies have mainly focused on vegetation shifts in abandoned rice paddies, little information is available about how these changes may affect their contribution to wetland functions. As newly abandoned fields proceed through succession, their hydrology and plant communities often change. Moreover, the relationships between these changes, soil microbial characteristics, and emissions of greenhouse gasses are poorly understood. In this study, we examined changes over the course of secondary succession of abandoned rice paddies to wetlands and investigated their ecological functions through changes in greenhouse gas fluxes and microbial characteristics. We collected gas and soil samples in summer and winter from areas dominated by Cyperaceae, Phragmites, and Sphagnum in each site. We found that CO2 emissions in summer were significantly higher than those in winter, but CH4 and N2O emission fluxes were consistently at very low levels and were similar among seasons and locations, due to their low nutrient conditions. These results suggest that microbial activity and abundance increased in summer. Greenhouse gas flux, soil properties, and microbial abundance were not affected by plant species, although the microbial community composition was changed by plant species. This information adds to our basic understanding of the contribution of wetlands that are transformed from abandoned rice paddy systems.


Assuntos
Gases/farmacologia , Efeito Estufa , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Microbiologia do Solo , Agricultura , Biodiversidade , Biomassa , Dióxido de Carbono/química , Dióxido de Carbono/farmacologia , Ecologia , Monitoramento Ambiental , Ativação Enzimática , Gases/química , Metano/química , Metano/farmacologia , Consórcios Microbianos/genética , Óxido Nitroso/química , Óxido Nitroso/farmacologia , Estações do Ano , Solo/química , Áreas Alagadas
13.
Appl Microbiol Biotechnol ; 100(4): 1999-2010, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26526456

RESUMO

The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to biogeochemical factors, the study of the microbial community even in surface soil should be performed in detail by considering the soil depth.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Ecossistema , Estuários , Microbiologia do Solo , Bactérias/genética , Carga Bacteriana , Desnitrificação , Dosagem de Genes , Genes Bacterianos , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética
14.
Glob Chang Biol ; 21(4): 1567-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25367159

RESUMO

Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China.


Assuntos
Poluentes Atmosféricos/análise , Sequestro de Carbono , Carbono/análise , Metano/análise , Óxido Nitroso/análise , Poaceae/fisiologia , Solo/química , China , Espécies Introduzidas , Estações do Ano , Áreas Alagadas
15.
Appl Microbiol Biotechnol ; 99(12): 5295-305, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25605423

RESUMO

The individual effects of either elevated CO2 or N deposition on soil microbial communities have been widely studied, but limited information is available regarding the responses of the bacteria, fungi, and archaea communities to both elevated CO2 and N in wetland ecosystems with different types of plants. Using a terminal restriction fragment length polymorphism (T-RFLP) analysis and real-time quantitative PCR (RT-Q-PCR), we compared communities of bacteria, fungi, and archaea in a marsh microcosm with one of seven macrophytes, Typha latifolia, Phragmites japonica, Miscanthus sacchariflorus, Scirpus lacustris, Juncus effusus, Phragmites australis, or Zizania latifolia, after exposing them to eCO2 and/or amended N for 110 days. Overall, our results showed that the elevated CO2 and N may affect the bacterial and archaeal communities, while they may not affect the fungal community in terms of both diversity and abundance. The effects of elevated CO2 and N on microbial community vary depending on the plant types, and each microbial community shows different responses to the elevated CO2 and N. In particular, elevated CO2 might force a shift in the archaeal community irrespective of the plant type, and the effect of elevated CO2 was enhanced when combined with the N effect. This study indicates that elevated CO2 and N addition could lead to changes in the community structures of bacteria and archaea. Our results also suggest that the fungal group is less sensitive to external changes, while the bacterial and archaeal groups are more sensitive to them. Finally, the characteristics of the plant type and relevant physicochemical factors induced by the elevated CO2 and N may be important key factors structuring the microbial community's response to environmental change, which implies the need for a more comprehensive approach to understanding the pattern of the wetland response to climate change.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Fungos/metabolismo , Nitrogênio/metabolismo , Plantas/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Plantas/classificação , Microbiologia do Solo , Áreas Alagadas
16.
Appl Microbiol Biotechnol ; 99(24): 10779-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26286511

RESUMO

There is ample evidence that methane (CH4) emissions from natural wetlands exhibit large spatial variations at a field scale. However, little is known about the metabolically active methanogens mediating these differences. We explored the spatial patterns in active methanogens of summer inundated Calamagrostis angustifolia marsh with low CH4 emissions and permanently inundated Carex lasiocarpa marsh with high CH4 emissions in Sanjiang Plain, China. In C. angustifolia marsh, the addition of (13)C-acetate significantly increased the CH4 production rate, and Methanosarcinaceae methanogens were found to participate in the consumption of acetate. In C. lasiocarpa marsh, there was no apparent increase in the CH4 production rate and no methanogen species were labeled with (13)C. When (13)CO2-H2 was added, however, CH4 production was found to be due to Fen Cluster (Methanomicrobiales) in C. angustifolia marsh and Methanobacterium Cluster B (Methanobacteriaceae) together with Fen Cluster in C. lasiocarpa marsh. These results suggested that CH4 was produced primarily by hydrogenotrophic methanogens using substrates mainly derived from plant litter in C. lasiocarpa marsh and by both hydrogenotrophic and acetoclastic methanogens using substrates mainly derived from root exudate in C. angustifolia marsh. The significantly lower CH4 emissions measured in situ in C. angustifolia marsh was primarily due to a deficiency of substrates compared to C. lasiocarpa marsh. Therefore, we speculate that the substrate source regulates both the type of active methanogens and the CH4 production pathway and consequently contributes to the spatial variations in CH4 productions observed in these freshwater marshes.


Assuntos
Biota , Água Doce/microbiologia , Metano/metabolismo , Áreas Alagadas , China , Hidrogênio/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Methanobacteriaceae/isolamento & purificação , Methanomicrobiales/crescimento & desenvolvimento , Methanomicrobiales/isolamento & purificação , Methanosarcinaceae/crescimento & desenvolvimento , Methanosarcinaceae/isolamento & purificação
17.
Environ Geochem Health ; 37(6): 1007-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26123992

RESUMO

Methane, which is produced by methanogenic archaea, is the second most abundant carbon compound in the atmosphere. Due to its strong radiative forcing, many studies have been conducted to determine its sources, budget, and dynamics. However, a mechanistic model of methane flux has not been developed thus far. In this study, we attempt to examine the relevance of the abundance of methanogen as a biological indicator of methane flux in three different types of soil ecosystems: permafrost, rice paddy, and mountainous wetland. We measured the annual average methane flux and abundance of methanogen in the soil ecosystems in situ. The correlation between methane flux and the abundance of methanogen exists only under a specific biogeochemical conditions such as SOM of higher than 60%, pH of 5.6-6.4, and water-saturated. Except for these conditions, significant correlations were absent. Therefore, microbial abundance information can be applied to a methane flux model selectively depending on the biogeochemical properties of the soil ecosystem.


Assuntos
Archaea/isolamento & purificação , Metano/metabolismo , Microbiologia do Solo , Solo/química , Archaea/metabolismo , Ecossistema , Concentração de Íons de Hidrogênio , Metano/química , Pergelissolo/química , Pergelissolo/microbiologia , Áreas Alagadas
18.
Environ Sci Pollut Res Int ; 31(3): 4630-4639, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110676

RESUMO

This study sheds light on the influence of fluoride on the changes in the properties of alkaline sandy soils and the efficiency of calcium-enriched biochar application. The investigation involved an incubation experiment with soil contaminated with varying NaF concentrations (0, 400, 800, and 1200 mg NaF kg-1 soil) and biochar (1% w/w). The data revealed that adding NaF to the soil resulted in significant increases in soil pH and decreases in total nitrogen (TN) content. Short-term fluoride pollution did not affect the microbial abundance due to certain factors such as increased soil pH and decreased microbial metabolism promoting the survival of cells under fluoride stress. However, a shift from bacterial to fungal-dominated microbial communities was observed at the highest NaF concentration. The nitrogen functional gene amoA was found to be highly sensitive to fluoride toxicity. The decrease in the abundance of amoA gene and the increase in soil pH can explain reduced nitrogen concentration. On the other hand, our findings indicated a significant decrease in enzyme activity in soil contaminated with mild to severe levels of NaF. This reduction in enzyme activity can be attributed to increased soil pH, decreased TN content, and the inhibition of microbial metabolism due to fluoride toxicity. Furthermore, the addition of calcium-rich biochar reduced fluoride solubility and adjusted pH, mitigating the negative effects of fluoride toxicity on soil properties. The use of biochar was also found to inhibit the accumulation of soil fluoride-resistant microbial genes.


Assuntos
Fluoretos , Solo , Solo/química , Cálcio , Areia , Microbiologia do Solo , Carvão Vegetal/química , Nitrogênio
19.
Sci Total Environ ; 925: 171745, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508257

RESUMO

Forests are significant carbon reservoirs, with approximately one-third of this carbon stored in the soil. Forest thinning, a prevalent management technique, is designed to enhance timber production, preserve biodiversity, and maintain ecosystem functions. Through its influence on biotic and abiotic factors, thinning can profoundly alter soil carbon storage. Yet, the full implications of thinning on forest soil carbon reservoirs and the mechanisms underpinning these changes remain elusive. In this study, we undertook a two-year monitoring initiative, tracking changes in soil extracellular enzyme activities (EEAs), microbial communities, and other abiotic parameters across four thinning intensities within a temperate pine forest. Our results show a marked increase in soil carbon stock following thinning. However, thinning also led to decreased dissolved organic carbon (DOC) content and a reduced DOC to soil organic carbon (SOC) ratio, pointing toward a decline in soil carbon lability. Additionally, fourier transform infrared spectroscopy (FTIR) analysis revealed an augmented relative abundance of aromatic compounds after thinning. There was also a pronounced increase in absolute EEAs (per gram of dry soil) post-thinning, implying nutrient limitations for soil microbes. Concurrently, the composition of bacterial and fungal communities shifted toward oligotrophic dominance post thinning. Specific EEAs (per gram of soil organic matter) exhibit a significant reduction following thinning, indicating a deceleration in organic matter decomposition rates. In essence, our findings reveal that thinning transitions soil toward an oligotrophic state, dampening organic matter decomposition, and thus bolstering the soil carbon storage potential of forest. This study provides enhanced insights into the nuanced relationship between thinning practices and forest soil carbon dynamics, serving as a robust foundation for enlightened forest management strategies.


Assuntos
Microbiota , Solo , Solo/química , Carbono , Florestas , Compostos Orgânicos , Microbiologia do Solo , Matéria Orgânica Dissolvida
20.
Microb Ecol ; 66(1): 171-81, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23681490

RESUMO

Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Ecossistema , Filogenia , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA