RESUMO
An autaptic synapse (or 'autapse') is a functional connection between a neuron and itself, commonly used in studying the molecular mechanisms underlying synaptic transmission and plasticity in central neurons. Most previous studies on autonomic synaptic functions have relied on spontaneous connections among neurons in mass cultures. However, growing evidence supports the utility of microcultures cultivating autaptic neurons for examining cholinergic transmission within sympathetic ganglia. Despite these advancements, standardized protocols for culturing autaptic sympathetic neurons have yet to be established. Drawing on historical literature, this study delineates optimal experimental conditions to efficiently and reliably produce cholinergic synapses in sympathetic neurons within a short time frame. Our research emphasizes five key factors: (i) the generation of uniformly sized microislands of growth permissive substrates; (ii) the addition of nerve growth factor, ciliary neurotrophic factor (CNTF), and serum to the culture medium; (iii) independence from specific serum and neuronal medium types; (iv) the reciprocal roles of CNTF and glial cells; and (v) the promotion of cholinergic synaptogenesis in SCG neurons through indirect glia co-cultures, rather than direct glial feeder layer cultures. In conclusion, glia-free monocultures of SCG neurons are relatively simple to prepare and yield robust and reliable synaptic currents. This makes them an effective model system for straightforwardly addressing fundamental questions about neurogenic mechanisms involved in cholinergic synaptic transmission in autonomic ganglia. Furthermore, autaptic culture experiments could eventually be implemented to investigate the roles of functional neuron-satellite glia units in regulating cholinergic functions under physiological and pathological conditions.
RESUMO
Porcine islet xenotransplantation has been highlighted as an alternative to allo islet transplantation. Despite the remarkable progress that has been made in porcine-islet pre-clinical studies in nonhuman primates, immunological tolerance to porcine islets has not been achieved to date. Therefore, allo islet transplantation could be required after the failure of porcine islet xenotransplantation. Here, we report the long-term control of diabetes by allogeneic pancreatic islet transplantation in diabetic rhesus monkeys that rejected previously transplanted porcine islets. Four diabetic male rhesus monkeys received the porcine islets and then allo islets (5700-19 000 IEQ/kg) were re-transplanted for a short or long period after the first xeno islet rejection. The recipient monkeys were treated with an immunosuppressive regimen consisting of ATG, humira, and anakinra for induction, and sirolimus and tofacitinib for maintenance therapy. The graft survival days of allo islets in these monkeys were >440, 395, >273, and 127, respectively, similar to that in allo islet transplanted cynomolgus monkeys that received the same immunosuppressive regimen without xeno sensitization. Taken together, it is likely that prior islet xenotransplantation does not affect the survival of subsequent allo islets under clinically applicable immunosuppressants.
Assuntos
Diabetes Mellitus , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Piperidinas , Pirimidinas , Masculino , Suínos , Animais , Macaca mulatta , Transplante Heterólogo , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Sobrevivência de EnxertoRESUMO
BACKGROUND: Studies on the interaction between tumour-infiltrating immune cells (TIICs) and tumour cells in melanoma arising from congenital melanocytic nevus (CMN) are lacking. OBJECTIVE: The aim of this study was to determine the intratumoral immune landscape of TIICs and tumour cells during invasion and metastasis. METHODS: Tissue specimens were obtained from patients with melanoma originating from CMN. Differential gene expression in melanoma cells and TIICs during invasion and metastasis was determined using spatial transcriptomics. RESULTS: As invasion depth increased, the expression of LGALS3, known to induce tumour-driven immunosuppression, increased in melanoma cells. In T cells, the expression of genes that inhibit T-cell activation increased with increasing invasion depth. In macrophages, the expression of genes related to the anti-inflammatory M2 phenotype was upregulated with increasing invasion depth. Compared to primary tumour cells, melanoma cells in metastatic lesions showed upregulated expression of genes associated with cancer immune evasion, including AXL and EPHA2, which impede T-cell recruitment, and BST2, associated with M2 polarization. Furthermore, T cells showed increased expression of genes related to immunosuppression, and macrophages exhibited increased expression of genes associated with the M2 phenotype. CONCLUSIONS: The interaction between melanomas arising from CMN and TIICs may be important for tumour progression and metastasis.
Assuntos
Melanoma , Nevo Pigmentado , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Nevo Pigmentado/genética , Nevo Pigmentado/imunologia , Nevo Pigmentado/patologia , Nevo Pigmentado/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/imunologia , Perfilação da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Invasividade Neoplásica , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Feminino , Galectina 3/genética , Galectina 3/metabolismo , Linfócitos T/imunologia , Transcriptoma , Receptor Tirosina Quinase Axl , Comunicação Celular , Pessoa de Meia-Idade , Galectinas/genética , Galectinas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Proteínas SanguíneasRESUMO
Satellite glial cells (SGCs), a major type of glial cell in the autonomic ganglia, closely envelop the cell body and even the synaptic regions of a single neuron with a very narrow gap. This structurally unique organization suggests that autonomic neurons and SGCs may communicate reciprocally. Glial Ca2+ signaling is critical for controlling neural activity. Here, for the first time we identified the machinery of store-operated Ca2+ entry (SOCE) which is critical for cellular Ca2+ homeostasis in rat sympathetic ganglia under normal and pathological states. Quantitative realtime PCR and immunostaining analyses showed that Orai1 and stromal interaction molecules 1 (STIM1) proteins are the primary components of SOCE machinery in the sympathetic ganglia. When the internal Ca2+ stores were depleted in the absence of extracellular Ca2+, the number of plasmalemmal Orai1 puncta was increased in neurons and SGCs, suggesting activation of the Ca2+ entry channels. Intracellular Ca2+ imaging revealed that SOCE was present in SGCs and neurons; however, the magnitude of SOCE was much larger in the SGCs than in the neurons. The SOCE was significantly suppressed by GSK7975A, a selective Orai1 blocker, and Pyr6, a SOCE blocker. Lipopolysaccharide (LPS) upregulated the glial fibrillary acidic protein and Toll-like receptor 4 in the sympathetic ganglia. Importantly, LPS attenuated SOCE via downregulating Orai1 and STIM1 expression. In conclusion, sympathetic SGCs functionally express the SOCE machinery, which is indispensable for intracellular Ca2+ signaling. The SOCE is highly susceptible to inflammation, which may affect sympathetic neuronal activity and thereby autonomic output.
RESUMO
PURPOSE OF REVIEW: Porcine islet xenotransplantation is a promising alternative to overcome the shortage of organ donors. For the successful application of islet xenotransplantation, robust immune/inflammatory responses against porcine islets should be thoroughly controlled. Over the last few decades, there have been numerous attempts to surmount xenogeneic immune barriers. In this review, we summarize the current progress in immunomodulatory therapy for the clinical application of porcine islet xenotransplantation. RECENT FINDINGS: Long-term graft survival of porcine islets was achieved by using anti-CD154 Ab-based regimens in a preclinical non-human primate (NHP) model. However, owing to a serious complication of thromboembolism in clinical trials, the development of an anti-CD154 Ab-sparing immunosuppressant procedure is required. The efficacy of new immunosuppressive practices that employ anti-CD40 Abs or other immunosuppressive reagents has been tested in a NHP model to realize their utility in porcine islet xenotransplantation. The recent progress in the development of immunomodulatory approaches, including the immunosuppressive regimen, which enables long-term graft survival in a pig-to-non-human primate islet xenotransplantation model, with their potential clinical applicability was reviewed.
Assuntos
Transplante das Ilhotas Pancreáticas , Animais , Ligante de CD40 , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Humanos , Imunomodulação , Imunossupressores/uso terapêutico , Suínos , Transplante HeterólogoRESUMO
With ever-growing technological demands in the imaging sensor industry for autonomous driving and augmented reality, developing sensors that can satisfy not only image resolution but also the response speed becomes more challenging. Herein, the focus is on developing a high-speed photosensor capable of obtaining high-resolution, high-speed imaging with colloidal quantum dots (QDs) as the photosensitive material. In detail, high-speed QD photodiodes are demonstrated with rising and falling times of τr = 28.8 ± 8.34 ns and τf = 40 ± 9.81 ns, respectively, realized by fast separation of electron-hole pairs due to the action of internal electric field at the QD interface, mainly by the interaction between metal oxide and the QD's ligands. Such energy transfer relations are analyzed and interpreted with time-resolved photoluminescence measurements, providing physical understanding of the device and working principles.
RESUMO
(ta-C) films coated through the filtered cathodic vacuum arc (FCVA) process as a hole transport layer (HTL) for perovskite solar cells (PSCs) and quantum dot light-emitting diodes (QDLEDs). The p-type ta-C film has several remarkable features, including ease of fabrication without the need for thermal annealing, reasonable electrical conductivity, optical transmittance, and a high work function. X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy examinations show that the electrical properties (sp3/sp2 hybridized bond) and work function of the ta-C HTL are appropriate for PSCs and QDLEDs. In addition, in order to correlate the performance of the devices, the optical, surface morphological, and structural properties of the FCVA-grown ta-C films with different thicknesses (5 ~ 20 nm) deposited on the ITO anode are investigated in detail. The optimized ta-C film with a thickness of 5 nm deposited on the ITO anode had a sheet resistance of 10.33 Ω-2, a resistivity of 1.34 × 10-4 Ω cm, and an optical transmittance of 88.97%. Compared to the reference PSC with p-NiO HTL, the PSC with 5 nm thick ta-C HTL yielded a higher power conversion efficiency (PCE, 10.53%) due to its improved fill factor. Further, the performance of QDLEDs with 5 nm thick ta-C hole injection layers (HIL) showed better than the performance of QDLEDs with different ta-C thicknesses. It is concluded that ta-C films have the potential to serve as HTL and HIL in next-generation PSCs and QDLEDs.
RESUMO
Pancreatic islet transplantation is an ultimate solution for treating patients with type 1 diabetes (T1D). The pig is an ideal donor of islets for replacing scarce human islets. Besides immunological hurdles, non-immunological hurdles including fragmentation and delayed engraftment of porcine islets need solutions to succeed in porcine islet xenotransplantation. In this study, we suggest a simple but effective modality, a cell/islet co-localizing composite, to overcome these challenges. Endothelial-like mesenchymal stem cells (EMSCs), differentiated from bone-marrow derived mouse mesenchymal stem cells (MSCs), and MSCs evenly coated the surface of porcine islets (>85%) through optimized culture conditions. Both MSCs and EMSCs significantly reduced the fragmentation of porcine islets and increased the islet masses, designated as islet equivalents (IEQs). In fibrin in vitro and in vivo angiogenesis analysis, constructed EMSC-islet composites showed higher angiogenic potentials than naked islets, MSC-islet composites, or human endothelial cell-islet composites. This novel delivery method of porcine islets may have beneficial effects on the engraftment of transplanted islets by prevention of fragmentation and enhancement of revascularization.
Assuntos
Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Fibrina/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Fisiológica , Suínos , Porco Miniatura , Transplante Heterólogo/métodosRESUMO
BACKGROUND: Pancreatic islet transplantation is currently proven as a promising treatment for type 1 diabetes patients with labile glycemic control and severe hypoglycemia unawareness. Upon islet transplantation, revascularization is essential for proper functioning of the transplanted islets. As IL-6 is important for endothelial cell survival and systemic inflammation related to xenograft, the effect of IL-6 receptor antagonist, tocilizumab, on revascularization of the transplanted islets was examined in pig to non-human primate islet xenotransplantation model. Also, the endothelial cell origin in a new vessel of the transplanted pig islets was determined. METHODS: Pig islets were isolated from designated pathogen-free (DPF) SNU miniature pigs and transplanted via portal vein into five streptozotocin-induced diabetic monkeys. One group (n = 2, basal group) was treated with anti-thymoglobulin (ATG), anti-CD40 antibody (2C10R4), sirolimus, and tacrolimus, and the other group was additionally given tocilizumab on top of basal immunosuppression (n = 3, Tocilizumab group). To confirm IL-6 blocking effect, C-reactive protein (CRP) levels and serum IL-6 concentration were measured. Scheduled biopsy of the margin of the posterior segment right lobe inferior of the liver was performed at 3 weeks after transplantation to assess the degree of revascularization of the transplanted islets. Immunohistochemical staining using anti-insulin, anti-CD31 antibodies, and lectin IB4 was conducted to find the origin of endothelial cells in the islet graft. RESULTS: CRP significantly increased at 1~2 days after transplantation in Basal group, but not in Tocilizumab group, and higher serum IL-6 concentration was measured in latter group, showing the biological potency of tocilizumab. In Basal group, well-developed endothelial cells were observed on the peri- and intraislet area, whereas the number of CD31+ cells in the intraislet space was significantly reduced in Tocilizumab group. Finally, new endothelial cells in the pig islet graft were positive for CD31, but not for lectin IB4, suggesting that they are originated from the recipient monkey. CONCLUSIONS: Our results demonstrated that tocilizumab can delay revascularization of the transplanted islet, although this effect had no significant correlation to the overall islet graft survival. In the pig to NHP islet xenotransplantation model, the endothelial cells from recipient monkey form new blood vessels in and around pig islets.
Assuntos
Sobrevivência de Enxerto/imunologia , Xenoenxertos/imunologia , Tolerância Imunológica/imunologia , Interleucina-6/antagonistas & inibidores , Transplante das Ilhotas Pancreáticas , Animais , Diabetes Mellitus Experimental/sangue , Insulina , Interleucina-6/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Transplante Heterólogo/métodosRESUMO
BACKGROUND: Islet transplantation is an effective therapy for selected patients with type 1 diabetes with labile glycemic control and hypoglycemic unawareness, but donor organs are limited. Islet xenotransplantation using porcine islets will potentially solve this problem. Although successful proof of concept studies using clinically inapplicable anti-CD154 monoclonal antibody (mAb) in pig-to-non-human primate (NHP) islet xenotransplantation has been demonstrated by several groups worldwide, potentially clinically applicable anti-CD40 (2C10R4) mAb-based studies have not been reported. METHODS: Nine streptozotocin (STZ)-induced diabetic rhesus monkeys were transplanted with adult porcine islets isolated from designated pathogen-free (DPF) miniature pigs. They were treated with anti-CD40 mAb-based immunosuppressive regimen and were divided into 3 groups: anti-CD40 only group (n = 2), belatacept group (anti-CD40 mAb+belatacept, n = 2), and tacrolimus group (anti-CD40 mAb+tacrolimus, n = 5). All monkeys received anti-thymocyte globulin (ATG), cobra venom factor (CVF), adalimumab, and sirolimus. Blood glucose levels (BGL) and serum porcine C-peptide concentrations were measured. Humoral and cellular immune responses were assessed by ELISA and ELISPOT, respectively. Liver biopsy and subsequent immunohistochemistry were conducted. RESULTS: All animals restored normoglycemia immediately after porcine islet transplantation and finished the follow-up without any severe adverse effects except for one animal (R092). Most animals maintained their body weight. Median survival, as defined by a serum porcine C-peptide concentration of >0.15 ng/mL, was 31, 27, and 60 days for anti-CD40 only, belatacept, and tacrolimus groups, respectively. Anti-αGal IgG levels in serum and the number of interferon-γ secreting T cells in peripheral blood mononuclear cells did not increase in most animals. CONCLUSION: These results showed that anti-CD40 mAb combined with tacrolimus was effective in prolonging porcine islet graft survival, but anti-CD40 mAb was not as effective as anti-CD154 mAb in terms of preventing early islet loss.
Assuntos
Antígenos CD40/imunologia , Imunossupressores/farmacologia , Transplante das Ilhotas Pancreáticas/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Transplante Heterólogo , Animais , Ligante de CD40/imunologia , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Xenoenxertos/imunologia , Terapia de Imunossupressão/métodos , Transplante das Ilhotas Pancreáticas/métodos , Leucócitos Mononucleares/imunologia , Macaca mulatta , Transplante Heterólogo/métodosRESUMO
Patients with cirrhosis often exhibit cardiac autonomic dysfunction (CAD), characterized by enhanced cardiac sympathetic activity and diminished cardiac vagal tone, leading to increased morbidity and mortality. This study delineates the cellular and molecular mechanisms associated with altered neuronal activities causing cirrhosis-induced CAD. Biliary and nonbiliary cirrhotic rats were produced by common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Three weeks after CBDL or TAA injection, the assessment of heart rate variability revealed autonomic imbalance in cirrhotic rats. We observed increased excitability in stellate ganglion (SG) neurons and decreased excitability in intracardiac ganglion (ICG) neurons in cirrhotic rats compared to sham-operated controls. Additionally, threshold, rheobase, and action potential duration exhibited opposite alterations in SG and ICG neurons, along with changes in afterhyperpolarization duration. A- and M-type K⺠channels were significantly downregulated in SG neurons, while M-type K⺠channels were upregulated, with downregulation of the N- and L-type Ca2⺠channels in the ICG neurons of cirrhotic rats, both in transcript expression and functional activity. Collectively, these findings suggest that cirrhosis induces an imbalance between cardiac sympathetic and parasympathetic neuronal activities via the differential regulation of K+ and Ca2+ channels. Thus, cirrhosis-induced CAD may be associated with impaired autonomic efferent functions within the homeostatic reflex arc that regulates cardiac functions.
RESUMO
The sympathetic ganglia represent a final motor pathway that mediates homeostatic "fight and flight" responses in the visceral organs. Satellite glial cells (SGCs) form a thin envelope close to the neuronal cell body and synapses in the sympathetic ganglia. This unique morphological feature suggests that neurons and SGCs form functional units for regulation of sympathetic output. In the present study, we addressed whether SGC-specific markers undergo age-dependent changes in the postnatal development of rat sympathetic ganglia. We found that fatty acid-binding protein 7 (FABP7) is an early SGC marker, whereas the S100B calcium-binding protein, inwardly rectifying potassium channel, Kir4.1 and small conductance calcium-activated potassium channel, SK3 are late SGC markers in the postnatal development of sympathetic ganglia. Unlike in sensory ganglia, FABP7 + SGC was barely detectable in adult sympathetic ganglia. The expression of connexin 43, a gap junction channel gradually increased with age, although it was detected in both SGCs and neurons in sympathetic ganglia. Glutamine synthetase was expressed in sensory, but not sympathetic SGCs. Unexpectedly, the sympathetic SGCs expressed a water-selective channel, aquaporin 1 instead of aquaporin 4, a pan-glial marker. However, aquaporin 1 was not detected in the SGCs encircling large neurons. Nerve injury and inflammation induced the upregulation of glial fibrillary acidic protein, suggesting that this protein is a hall marker of glial activation in the sympathetic ganglia. In conclusion, our findings provide basic information on the in vivo profiles of specific markers for identifying sympathetic SGCs at different stages of postnatal development in both healthy and diseased states.
Assuntos
Neuroglia , Células Satélites Perineuronais , Ratos , Animais , Células Satélites Perineuronais/metabolismo , Neuroglia/metabolismo , Gânglios Simpáticos , Neurônios , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Gânglios Espinais/metabolismoRESUMO
BACKGROUND: Exosomes, nano-sized vesicles ranging between 30 and 150 nm secreted by human cells, play a pivotal role in long-range intercellular communication and have attracted significant attention in the field of regenerative medicine. Nevertheless, their limited productivity and cost-effectiveness pose challenges for clinical applications. These issues have recently been addressed by cell-derived nanovesicles (CDNs), which are physically synthesized exosome-mimetic nanovesicles from parent cells, as a promising alternative to exosomes. CDNs exhibit structural, physical, and biological properties similar to exosomes, containing intracellular protein and genetic components encapsulated by the cell plasma membrane. These characteristics allow CDNs to be used as regenerative medicine and therapeutics on their own, or as a drug delivery system. METHODS: The paper reviews diverse methods for CDN synthesis, current analysis techniques, and presents engineering strategies to improve lesion targeting efficiency and/or therapeutic efficacy. RESULTS: CDNs, with their properties similar to those of exosomes, offer a cost-effective and highly productive alternative due to their non-living biomaterial nature, nano-size, and readiness for use, allowing them to overcome several limitations of conventional cell therapy methods. CONCLUSION: Ongoing research and enhancement of CDNs engineering, along with comprehensive safety assessments and stability analysis, exhibit vast potential to advance regenerative medicine by enabling the development of efficient therapeutic interventions.
Assuntos
Exossomos , Humanos , Exossomos/metabolismo , Sistemas de Liberação de Medicamentos , Medicina RegenerativaRESUMO
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used for insulator. Oxygen vacancies in HfOx create defect states below the Fermi level, providing a pathway for hole injection. The concentration of these oxygen vacancies can be controlled by the annealing temperature. We optimized the all-inorganic QLEDs with HfOx as the HTL by changing the annealing temperature. The optimized QLEDs with HfOx as the HTL showed a maximum luminance and current efficiency of 66,258 cd/m2 and 9.7 cd/A, respectively. The fabricated all-inorganic QLEDs exhibited remarkable stability, particularly when compared to devices using organic materials for the HTL. Under extended storage in ambient conditions, the all-inorganic device demonstrated a significantly enhanced operating lifetime (T50) of 5.5 h, which is 11 times longer than that of QLEDs using an organic HTL. These results indicate that the all-inorganic QLEDs structure, with ITO/MoO3/HfOx/QDs/ZnMgO/Al, exhibits superior stability compared to organic-inorganic hybrid QLEDs.
RESUMO
In this study, we demonstrated the effective separation of charge carriers within the IGZO/IZO heterostructure by incorporating IZO. We have chosen IGZO for its high mobility and excellent on-off switching behavior in the front channel of our oxide-oxide heterostructure. Similarly, for an additional oxide layer, we have selected IZO due to its outstanding electrical properties. The optimized optoelectronic characteristics of the IGZO/IZO phototransistors were identified by adjusting the ratio of In:Zn in the IZO layer. As a result, the most remarkable traits were observed at the ratio of In:Zn = 8:2. Compared to the IGZO single-layer phototransistor, the IGZO/IZO(8:2) phototransistor showed improved photoresponse characteristics, with photosensitivity and photoresponsivity values of 1.00 × 107 and 89.1 AW-1, respectively, under visible light wavelength illumination. Moreover, the electrical characteristics of the IGZO/IZO(8:2) transistor, such as field effect mobility (µsat) and current on/off ratio (Ion/Ioff), were highly enhanced compared to the IGZO transistor. The µsat and Ion/Ioff were increased by about 2.1 times and 2.3 times, respectively, compared to the IGZO transistor. This work provides an approach for fabricating visible-light phototransistors with elevated optoelectronic properties and low power consumption based on an oxide-oxide heterostructure. The phototransistor with improved performance can be applied to applications such as color-selective visible-light image sensors and biometric sensors interacting with human-machine interfaces.
RESUMO
Visible light photodetectors are extensively researched with transparent metal oxide holes/electron layers for various applications. Among the metal oxide transporting layers, nickel oxide (NiO) and zinc oxide (ZnO) are commonly adopted due to their wide band gap and high transparency. The objective of this study was to improve the visible light detection of NiO/ZnO photodiodes by introducing an additional quantum dot (QD) layer between the NiO and ZnO layers. Utilizing the unique property of QDs, we could select different sizes of QDs and responsive light wavelength ranges. The resulting red QDs utilized device that could detect light starting at 635 nm to UV (Ultra-violet) light wavelength and exhibited a photoresponsivity and external quantum efficiency (EQE) of 14.99 mA/W and 2.92% under 635 nm wavelength light illumination, respectively. Additionally, the green QDs, which utilized a device that could detect light starting at 520 nm, demonstrated photoresponsivity values of 8.34 mA/W and an EQE of 1.99% under 520 nm wavelength light illumination, respectively. In addition, we used X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to investigate the origin of the photocurrents and the enhancement of the device's performance. This study suggests that incorporating QDs with metal oxide semiconductors is an effective approach for detecting visible light wavelengths in transparent optoelectronic devices.
RESUMO
We introduce an enhanced performance organic-inorganic hybrid p-n junction photodiode, utilizing poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) and ZnO, fabricated through a solution-based process at a low temperature under 100 °C. Improved interfacial electronic structure, characterized by shallower Gaussian standard deviation of the density-of-state distribution and a larger interface dipole, has resulted in a remarkable fold increase of â¼102 in signal-to-noise ratio for the device. This photodiode exhibits a high specific detectivity (2.32 × 1011 Jones, cm×Hz×W-1) and exceptional rectification ratio (5.47 × 104 at ±1 V). The primary light response, concentrated in the optimal thickness of the PTAA layer, contributes to response over the entire UVA region and rapid response speed, with rise and fall times of 0.24 and 0.64 ms, respectively. Furthermore, this work demonstrates immense potential of our device for health monitoring applications by enabling real-time and continuous measurements of UV intensity.
RESUMO
BACKGROUND: Psoriasis is a chronic inflammatory skin disease with a Th17-skewed immune phenotype. Although it has been generally accepted that regulatory T cells (Tregs) in lesional psoriatic skin have functional impairment due to the local inflammatory microenvironment, the molecular properties of skin-homing psoriatic Tregs have not been well explored. METHODS: We designed an extensive 39 marker mass cytometry (CyTOF) panel to deeply profile the immune landscape of skin-homing Tregs from 31 people with psoriasis stratified by psoriasis area severity index score as mild (n = 15) to moderate-severe (n = 16) and 32 healthy controls. We further validated the findings with an in-vitro chemokine-mediated Treg migration assay, immunofluorescent imaging of normal and psoriatic lesional skin and analysed public single-cell RNA-sequencing datasets to expand upon our findings into the local tissue microenvironments. FINDINGS: We discovered an overall decrease in CLAhi Tregs and specifically, CLAhiCCR5+ Tregs in psoriasis. Functional markers CD39 and FoxP3 were elevated in psoriatic Tregs. However, CCR7 expression was significantly increased while CCR4 and CLA expression was reduced in psoriatic Tregs and CLAhi Tregs, which was associated with disease severity. Moreover, psoriatic Tregs revealed increased migratory capacity towards CCR7's ligands, CCL19/CCL21. Interrogation of public single-cell RNA sequencing data confirmed reduced expression of skin-trafficking markers in lesional-skin Tregs compared to non-lesioned skin, further substantiated by immunofluorescent staining. INTERPRETATION: Psoriatic circulating Tregs showed an impaired skin-trafficking phenotype thus leading to insufficient suppression of ongoing inflammation in the lesional skin, expanding upon our current understanding of the impairment of Treg-mediated immunosuppression in psoriasis. FUNDING: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and Information and Communications Technology (2020R1C1C1014513, 2021R1A4A5032185, 2020R1F1A1073692); and the new faculty research seed money grant of Yonsei University College of Medicine for 2021 (2021-32-0033).
Assuntos
Psoríase , Linfócitos T Reguladores , Humanos , Receptores CCR7/metabolismo , Psoríase/metabolismo , Pele/metabolismo , Células Th17RESUMO
Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) are known to exert immunosuppressive functions. This study showed that MSC-sEVs specifically convert T helper 17 (Th17) cells into IL-17 low-producer (ex-Th17) cells by degrading RAR-related orphan receptor γt (RORγt) at the protein level. In experimental autoimmune encephalomyelitis (EAE)-induced mice, treatment with MSC-sEVs was found to not only ameliorate clinical symptoms but also to reduce the number of Th17 cells in draining lymph nodes and the central nervous system. MSC-sEVs were found to destabilize RORγt by K63 deubiquitination and deacetylation, which was attributed to the EP300-interacting inhibitor of differentiation 3 (Eid3) contained in the MSC-sEVs. Small extracellular vesicles isolated from the Eid3 knockdown MSCs by Eid3-shRNA failed to downregulate RORγt. Moreover, forced expression of Eid3 by gene transfection was found to significantly decrease the protein level of RORγt in Th17 cells. Altogether, this study reveals the novel immunosuppressive mechanisms of MSC-sEVs, which suggests the feasibility of MSC-sEVs as an attractive therapeutic tool for curing Th17-mediated inflammatory diseases.
Assuntos
Encefalomielite Autoimune Experimental , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th17 , Diferenciação Celular/genética , Processamento de Proteína Pós-Traducional , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismoRESUMO
Charge imbalance in quantum-dot light-emitting diodes (QLEDs) causes emission degradation. Therefore, many studies focused on improving hole injection into the QLEDs-emitting layer owing to lower hole conductivity compared to electron conductivity. Herein, CuCo2O4 has a relatively higher hole conductivity than other binary oxides and can induce an improved charge balance. As the annealing temperature decreases, the valence band maximum (VBM) of CuCo2O4 shifts away from the Fermi energy level (EF), resulting in an enhanced hole injection through better energy level alignment with hole transport layer. The maximum luminance and current efficiency of the CuCo2O4 hole injection layer (HIL) of the QLED were measured as 93,607 cd/m2 and 11.14 cd/A, respectively, resulting in a 656% improvement in luminous performance of QLEDs compared to conventional metal oxide HIL-based QLEDs. These results demonstrate that the electrical properties of CuCo2O4 can be improved by adjusting the annealing temperature, suggesting that solution-processed spinel can be applied in various optoelectronic devices.