Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Exp Bot ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630600

RESUMO

Kales (Brassica oleracea convar acephala) are fast-growing, nutritious leafy vegetables ideal for year-round indoor farming. However, selection of best cultivars for growth under artificial lighting necessitates a deeper understanding of leaf metabolism in different kale types. Here we examined a curly leaved cultivar Half Tall and a lacinato type cultivar Black Magic under moderate growth light (130 µmol photons m-1s-1/22°C) and high light (800 µmol photons m-1s-1/26°C) conditions. These conditions induced genotype-dependent differences in nutritionally important metabolites, especially anthocyanins and glucosinolates (GSLs), in the kale cultivars. In the pale green Half Tall, growth under high light conditions did not induce changes in either pigmentation or total GSL content. In contrast, the purple pigmentation of Black Magic intensified due to increased anthocyanin accumulation. Black Magic showed reduced amounts of indole GSLs and increased amounts of aliphatic GSLs under high light conditions, with notable cultivar-specific adjustments in individual GSL species. Correlation analysis of metabolite profiles suggested cultivar-specific metabolic interplay between serine biosynthesis and the production of indole GSLs. RNA sequencing identified candidate genes encoding metabolic enzymes and regulatory components behind anthocyanin and GSL biosynthesis. These findings improve the understanding of leaf metabolism and its effects on the nutritional quality of kale cultivars.

2.
Plant Physiol ; 188(4): 2039-2058, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35043967

RESUMO

Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla
3.
Plant Physiol ; 186(4): 1859-1877, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618107

RESUMO

Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.


Assuntos
Aconitato Hidratase/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Aconitato Hidratase/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo
4.
Plant Physiol ; 182(2): 1161-1181, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31659127

RESUMO

Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Botrytis/imunologia , Senescência Celular/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Proteína Fosfatase 2/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Senescência Celular/fisiologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Resistência à Doença/imunologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mutação , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/genética , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
5.
Plant Cell Environ ; 43(1): 209-222, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31702837

RESUMO

Redox processes regulate plant/insect responses, but the precise roles of environmental triggers and specific molecular components remain poorly defined. Aphid fecundity and plant responses were therefore measured in Arabidopsis thaliana mutants deficient in either catalase 2 (cat2), different protein phosphatase 2A (PP2A) subunits or glutathione (cad2, pad2, and clt1) under either moderate (250 µmol m-2 s-1 ) or high (800 µmol m-2 s-1 ) light. Aphid fecundity was decreased in pp2a-b'γ, cat2 and the cat2 pp2a-b'γ double mutants relative to the wild type under moderate irradiance. High light decreased aphid numbers in all genotypes except for cat2. Aphid fecundity was similar in the cat2 and glutathione-, phytoalexin-, and glucosinolate-deficient cat2cad2 double mutants under both irradiances. Aphid-induced increases in transcripts encoding the abscisic acid-related ARABIDOPSIS ZINC-FINGER PROTEIN 1 transcription factor were observed only under moderate light. Conversely, aphid induced increases in transcripts encoding the jasmonate-synthesis enzyme ALLENE OXIDE CYCLASE 3 was observed in all genotypes only under high light. Aphid-induced increases in REDOX RESPONSIVE TRANSCRIPTION FACTOR 1 mRNAs were observed in all genotypes except pp2a-b'ζ1-1 under both irradiances. Aphid fecundity is therefore regulated by cellular redox signalling that is mediated, at least in part, through PP2A-dependent mitochondria to nucleus signalling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Proteína Fosfatase 2/metabolismo , Transdução de Sinais/fisiologia , Animais , Afídeos/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catalase/genética , Proteínas de Transporte de Cobre/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Glutationa/genética , Luz , Oxirredução , Folhas de Planta/metabolismo , Proteína Fosfatase 2/genética , RNA Mensageiro , Proteínas de Ligação a RNA , Sesquiterpenos/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Proteína ran de Ligação ao GTP , Fitoalexinas
6.
Biochem J ; 476(16): 2347-2350, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462440

RESUMO

Plants are equipped with versatile pattern recognition receptors (PRRs), which monitor their external environment and elicit defensive measures upon detection of potential risk for disease. Inside the cell, receptor-like cytoplasmic kinases (RLCKs) are key components of PRR signalling, but their molecular functions and regulatory interactions are not yet fully understood. In tomato, two RLCKs, Pti1a and Pti1b, are important signalling components that relay early defence signals elicited by bacterial flagellin, a conserved pattern common to various pathogenic and non-pathogenic microbes. An important question to resolve is how plant immune reactions are regulated to prevent unnecessary defensive measures. A recent paper published in the Biochemical Journal by Giska and Martin [Biochem. J. (2019) 476, 1621-1635] reports the identification and biochemical characterization of a new tomato (Solanum lycopersicum) protein phosphatase that negatively controls early defence signalling. The phosphatase, termed pattern-triggered immunity inhibiting PP2C 1 (Pic1), negatively controls the signalling function of Pti1b and therefore holds a central position in the defence signalling network. The Pti1b-Pic1 kinase-phosphatase interaction provides mechanistic insights that forward our understanding of protein phosphatases and their importance in plant immunity.


Assuntos
Solanum lycopersicum , Flagelina , Fosforilação , Imunidade Vegetal , Transdução de Sinais
7.
PLoS Biol ; 14(12): e2000322, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27923039

RESUMO

Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)-a central node in guard cell CO2 signaling-and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Variação Genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Ozônio/metabolismo , Fotossíntese , Locos de Características Quantitativas , Água
8.
Plant J ; 89(1): 112-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598402

RESUMO

Glucosinolates (GSL) of cruciferous plants comprise a major group of structurally diverse secondary compounds which act as deterrents against aphids and microbial pathogens and have large commercial and ecological impacts. While the transcriptional regulation governing the biosynthesis and modification of GSL is now relatively well understood, post-translational regulatory components that specifically determine the structural variation of indole glucosinolates have not been reported. We show that the cytoplasmic protein phosphatase 2A regulatory subunit B'γ (PP2A-B'γ) physically interacts with indole glucosinolate methyltransferases and controls the methoxylation of indole glucosinolates and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. By taking advantage of proteomic approaches and metabolic analysis we further demonstrate that PP2A-B'γ is required to control the abundance of oligomeric protein complexes functionally linked with the activated methyl cycle and the trans-methylation capacity of leaf cells. These findings highlight the key regulatory role of PP2A-B'γ in methionine metabolism and provide a previously unrecognized perspective for metabolic engineering of glucosinolate metabolism in cruciferous plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Folhas de Planta/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metionina/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Biológicos , Folhas de Planta/genética , Ligação Proteica , Proteína Fosfatase 2/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteômica/métodos , Homologia de Sequência de Aminoácidos
9.
Physiol Plant ; 162(2): 162-176, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28815615

RESUMO

Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Biológicos , Proteínas de Plantas/genética , Plantas/genética , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
11.
New Phytol ; 205(3): 1250-1263, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25307043

RESUMO

Organellar reactive oxygen species (ROS) signalling is a key mechanism that promotes the onset of defensive measures in stress-exposed plants. The underlying molecular mechanisms and feedback regulation loops, however, still remain poorly understood. Our previous work has shown that a specific regulatory B'γ subunit of protein phosphatase 2A (PP2A) is required to control organellar ROS signalling and associated metabolic adjustments in Arabidopsis thaliana. Here, we addressed the mechanisms through which PP2A-B'γ impacts on organellar metabolic crosstalk and ROS homeostasis in leaves. Genetic, biochemical and pharmacological approaches, together with a combination of data-dependent acquisition (DDA) and selected reaction monitoring (SRM) MS techniques, were utilized to assess PP2A-B'γ-dependent adjustments in Arabidopsis thaliana. We show that PP2A-B'γ physically interacts with the cytoplasmic form of aconitase, a central metabolic enzyme functionally connected with mitochondrial respiration, oxidative stress responses and regulation of cell death in plants. Furthermore, PP2A-B'γ impacts ROS homeostasis by controlling the abundance of specific alternative oxidase isoforms, AOX1A and AOX1D, in leaf mitochondria. We conclude that PP2A-B'γ-dependent regulatory actions modulate the functional status of metabolic enzymes that essentially contribute to intracellular ROS signalling and metabolic homeostasis in plants.


Assuntos
Aconitato Hidratase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Citoplasma/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fluorescência , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/antagonistas & inibidores , Dados de Sequência Molecular , Mutação/genética , Oxirredutases/antagonistas & inibidores , Peptídeos/química , Fosforilação/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos
12.
New Phytol ; 208(3): 647-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26174112

RESUMO

With the tremendous progress of the past decades, molecular plant science is becoming more unified than ever. We now have the exciting opportunity to further connect subdisciplines and understand plants as whole organisms, as will be required to efficiently utilize them in natural and agricultural systems to meet human needs. The subfields of photosynthesis, plant developmental biology and plant stress are used as examples to discuss how plant science can become better integrated. The challenges, strategies and rich opportunities for the integration of the plant sciences are discussed. In recent years, more and more overlap between various subdisciplines has been inadvertently discovered including tradeoffs that may occur in plants engineered for biotechnological applications. Already important, bioinformatics and computational modelling will become even more central to structuring and understanding the ever growing amounts of data. The process of integrating and overlapping fields in plant biology research is advancing, but plant science will benefit from dedicating more effort and urgency to reach across its boundaries.


Assuntos
Botânica/tendências , Fotossíntese , Desenvolvimento Vegetal , Plantas/metabolismo , Estresse Fisiológico , Comunicação Celular , Parede Celular/metabolismo , Cloroplastos/metabolismo , Biologia Computacional , Expressão Gênica , Imunidade Vegetal , Madeira/metabolismo
13.
Plant Cell Environ ; 38(12): 2641-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26012558

RESUMO

Plants survive periods of unfavourable conditions with the help of sensory mechanisms that respond to reactive oxygen species (ROS) as signalling molecules in different cellular compartments. We have previously demonstrated that protein phosphatase 2A (PP2A) impacts on organellar cross-talk and associated pathogenesis responses in Arabidopsis thaliana. This was evidenced by drastically enhanced pathogenesis responses and cell death in cat2 pp2a-b'γ double mutants, deficient in the main peroxisomal antioxidant enzyme CATALASE 2 and PP2A regulatory subunit B'γ (PP2A-B'γ). In the present paper, we explored the impacts of PP2A-B'γ and a highly similar regulatory subunit PP2A-B'ζ in growth regulation and light stress tolerance in Arabidopsis. PP2A-B'γ and PP2A-B'ζ display high promoter activities in rapidly growing tissues and are required for optimal growth under favourable conditions. Upon acclimation to a combination of high light, elevated temperature and reduced availability of water, however, pp2a-b'γζ double mutants grow similarly to the wild type and show enhanced tolerance against photo-oxidative stress. We conclude that by controlling ROS homeostasis and signalling, PP2A-B'γ and PP2A-B'ζ may direct acclimation strategies upon environmental perturbations, hence acting as important determinants of defence responses and light acclimation in plants.


Assuntos
Arabidopsis/enzimologia , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas , Aclimatação , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Genes Reporter , Homeostase , Luz , Mutação , Estresse Oxidativo , Fosforilação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteína Fosfatase 2/genética , Espécies Reativas de Oxigênio/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Estresse Fisiológico
14.
Plant Cell ; 24(7): 2934-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22822205

RESUMO

In nature, plants are challenged by constantly changing light conditions. To reveal the molecular mechanisms behind acclimation to sometimes drastic and frequent changes in light intensity, we grew Arabidopsis thaliana under fluctuating light conditions, in which the low light periods were repeatedly interrupted with high light peaks. Such conditions had only marginal effect on photosystem II but induced damage to photosystem I (PSI), the damage being most severe during the early developmental stages. We showed that PROTON GRADIENT REGULATION5 (PGR5)-dependent regulation of electron transfer and proton motive force is crucial for protection of PSI against photodamage, which occurred particularly during the high light phases of fluctuating light cycles. Contrary to PGR5, the NAD(P)H dehydrogenase complex, which mediates cyclic electron flow around PSI, did not contribute to acclimation of the photosynthetic apparatus, particularly PSI, to rapidly changing light intensities. Likewise, the Arabidopsis pgr5 mutant exhibited a significantly higher mortality rate compared with the wild type under outdoor field conditions. This shows not only that regulation of PSI under natural growth conditions is crucial but also the importance of PGR5 in PSI protection.


Assuntos
Aclimatação/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/efeitos da radiação , Aclimatação/efeitos da radiação , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Respiração Celular/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Modelos Moleculares , Mutação , Oxirredução/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Fenótipo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Força Próton-Motriz/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação
15.
New Phytol ; 202(1): 145-160, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24299221

RESUMO

Oxidative stress responses are influenced by growth day length, but little is known about how this occurs. A combined reverse genetics, metabolomics and proteomics approach was used to address this question in Arabidopsis thaliana. A catalase-deficient mutant (cat2), in which intracellular oxidative stress drives pathogenesis-related responses in a day length-dependent manner, was crossed with a knockdown mutant for a specific type 2A protein phosphatase subunit (pp2a-b'γ). In long days (LD), the pp2a-b'γ mutation reinforced cat2-triggered pathogenesis responses. In short days (SD), conditions in which pathogenesis-related responses were not activated in cat2, the additional presence of the pp2a-b'γ mutation allowed lesion formation, PATHOGENESIS-RELATED GENE1 (PR1) induction, salicylic acid (SA) and phytoalexin accumulation and the establishment of metabolite profiles that were otherwise observed in cat2 only in LD. Lesion formation in cat2 pp2a-b'γ in SD was genetically dependent on SA synthesis, and was associated with decreased PHYTOCHROME A transcripts. Phosphoproteomic analyses revealed that several potential protein targets accumulated in the double mutant, including recognized players in pathogenesis and key enzymes of primary metabolism. We conclude that the cat2 and pp2a-b'γ mutations interact synergistically, and that PP2A-B'γ is an important player in controlling day length-dependent responses to intracellular oxidative stress, possibly through phytochrome-linked pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Espaço Intracelular/metabolismo , Estresse Oxidativo , Fotoperíodo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Eletroforese em Gel Bidimensional , Flores/genética , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Genótipo , Indóis/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Folhas de Planta/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteoma/metabolismo , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/metabolismo , Tiazóis/metabolismo
16.
Plant Physiol ; 162(2): 589-603, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23596191

RESUMO

A number of Arabidopsis (Arabidopsis thaliana) mutants exhibit leaf reticulation, having green veins that stand out against paler interveinal tissues, fewer cells in the interveinal mesophyll, and normal perivascular bundle sheath cells. Here, to examine the basis of leaf reticulation, we analyzed the Arabidopsis RETICULATA-RELATED (RER) gene family, several members of which cause leaf reticulation when mutated. Although transcripts of RE, RER1, and RER3 were mainly detected in the bundle sheath cells of expanded leaves, functional RER3:GREEN FLUORESCENT PROTEIN was visualized in the chloroplast membranes of all photosynthetic cells. Leaf reticulation in the re and rer3 loss-of-function mutants occurred, along with accumulation of reactive oxygen species, in a photoperiod-dependent manner. A comparison of re and rer3 leaf messenger RNA expression profiles showed more than 200 genes were similarly misexpressed in both mutants. In addition, metabolic profiles of mature leaves revealed that several biosynthetic pathways downstream of pyruvate are altered in re and rer3. Double mutant analysis showed that only re rer1 and rer5 rer6 exhibited synergistic phenotypes, indicating functional redundancy. The redundancy between RE and its closest paralog, RER1, was confirmed by overexpressing RER1 in re mutants, which partially suppressed leaf reticulation. Our results show that RER family members can be divided into four functional modules with divergent functions. Moreover, these results provide insights into the origin of the reticulated phenotype, suggesting that the RER proteins functionally interconnect photoperiodic growth, amino acid homeostasis, and reactive oxygen species metabolism during Arabidopsis leaf growth.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Morte Celular/genética , Regulação da Expressão Gênica de Plantas , Luz , Metaboloma , Família Multigênica , Mutação , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Fotoperíodo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Exp Bot ; 65(9): 2391-404, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24663344

RESUMO

The chloroplasts of land plants contain internal membrane systems, the thylakoids, which are arranged in stacks called grana. Because grana have not been found in Cyanobacteria, the evolutionary origin of genes controlling the structural and functional diversification of thylakoidal membranes in land plants remains unclear. The angulata10-1 (anu10-1) mutant, which exhibits pale-green rosettes, reduced growth, and deficient leaf lateral expansion, resulting in the presence of prominent marginal teeth, was isolated. Palisade cells in anu10-1 are larger and less packed than in the wild type, giving rise to large intercellular spaces. The ANU10 gene encodes a protein of unknown function that localizes to both chloroplasts and amyloplasts. In chloroplasts, ANU10 associates with thylakoidal membranes. Mutant anu10-1 chloroplasts accumulate H2O2, and have reduced levels of chlorophyll and carotenoids. Moreover, these chloroplasts are small and abnormally shaped, thylakoidal membranes are less abundant, and their grana are absent due to impaired thylakoid stacking in the anu10-1 mutant. Because the trimeric light-harvesting complex II (LHCII) has been reported to be required for thylakoid stacking, its levels were determined in anu10-1 thylakoids and they were found to be reduced. Together, the data point to a requirement for ANU10 for chloroplast and mesophyll development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Células do Mesofilo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas das Membranas dos Tilacoides/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/metabolismo , Proteínas das Membranas dos Tilacoides/genética
18.
Curr Biol ; 34(2): R59-R61, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38262360

RESUMO

Environmental stress induces mitochondrial retrograde signals that prompt protective responses in plants. The elusive mitochondrial signal has now been uncovered in a new study, which identifies formation of reactive oxygen species inside mitochondria as the key trigger of stress signals.


Assuntos
Biologia , Mitocôndrias , Espécies Reativas de Oxigênio
19.
Planta ; 237(2): 399-412, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22971817

RESUMO

The comparative study of photosynthetic regulation in the thylakoid membrane of different phylogenetic groups can yield valuable insights into mechanisms, genetic requirements and redundancy of regulatory processes. This review offers a brief summary on the current understanding of light harvesting and photosynthetic electron transport regulation in different photosynthetic eukaryotes, with a special focus on the comparison between higher plants and unicellular algae of secondary endosymbiotic origin. The foundations of thylakoid structure, light harvesting, reversible protein phosphorylation and PSI-mediated cyclic electron transport are traced not only from green algae to vascular plants but also at the branching point between the "green" and the "red" lineage of photosynthetic organisms. This approach was particularly valuable in revealing processes that (1) are highly conserved between phylogenetic groups, (2) serve a common physiological role but nevertheless originate in divergent genetic backgrounds or (3) are missing in one phylogenetic branch despite their unequivocal importance in another, necessitating a search for alternative regulatory mechanisms and interactions.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Filogenia , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/classificação , Proteínas de Cloroplastos/metabolismo , Diatomáceas/enzimologia , Diatomáceas/metabolismo , Transporte de Elétrons , Evolução Molecular , Fosforilação , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Tilacoides/enzimologia , Tilacoides/metabolismo
20.
Plant Physiol ; 160(4): 1896-910, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23033142

RESUMO

According to the "state transitions" theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality. The role of LHCII phosphorylation upon changes in light intensity is less thoroughly investigated, particularly when changes in light intensity are too fast to allow the phosphorylation/dephosphorylation processes to occur. Here, we demonstrate that the Arabidopsis (Arabidopsis thaliana) stn7 (for state transition7) mutant, devoid of the STN7 kinase and LHCII phosphorylation, shows a growth penalty only under fluctuating white light due to a low amount of PSI. Under constant growth light conditions, stn7 acquires chloroplast redox homeostasis by increasing the relative amount of PSI centers. Thus, in plant chloroplasts, the steady-state LHCII phosphorylation plays a major role in preserving PSI upon rapid fluctuations in white light intensity. Such protection of PSI results from LHCII phosphorylation-dependent equal distribution of excitation energy to both PSII and PSI from the shared LHCII antenna and occurs in cooperation with nonphotochemical quenching and the proton gradient regulation5-dependent control of electron flow, which are likewise strictly regulated by white light intensity. LHCII phosphorylation is concluded to function both as a stabilizer (in time scales of seconds to minutes) and a dynamic regulator (in time scales from tens of minutes to hours and days) of redox homeostasis in chloroplasts, subject to modifications by both environmental and metabolic cues. Exceeding the capacity of LHCII phosphorylation/dephosphorylation to balance the distribution of excitation energy between PSII and PSI results in readjustment of photosystem stoichiometry.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Aclimatação/efeitos da radiação , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Transporte de Elétrons/efeitos da radiação , Modelos Biológicos , Mutação/genética , Fenótipo , Fosforilação/efeitos da radiação , Fotossíntese/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA