Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830136

RESUMO

The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.


Assuntos
Complexos de Coordenação/farmacocinética , Metaloporfirinas/farmacocinética , Metais/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Porfirinas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Liberação Controlada de Fármacos , Feminino , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Células MCF-7 , Metaloporfirinas/química , Metaloporfirinas/farmacologia , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual , Difração de Raios X
2.
BMC Genomics ; 20(Suppl 8): 545, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31307387

RESUMO

BACKGROUND: With the continuing decrease in cost of whole genome sequencing (WGS), we have already approached the point of inflection where WGS testing has become economically feasible, facilitating broader access to the benefits that are helping to define WGS as the new diagnostic standard. WGS provides unique opportunities for detection of structural variants; however, such analyses, despite being recognized by the research community, have not previously made their way into routine clinical practice. RESULTS: We have developed a clinically validated pipeline for highly specific and sensitive detection of structural variants basing on 30X PCR-free WGS. Using a combination of breakpoint analysis of split and discordant reads, and read depth analysis, the pipeline identifies structural variants down to single base pair resolution. False positives are minimized using calculations for loss of heterozygosity and bi-modal heterozygous variant allele frequencies to enhance heterozygous deletion and duplication detection respectively. Compound and potential compound combinations of structural variants and small sequence changes are automatically detected. To facilitate clinical interpretation, identified variants are annotated with phenotype information derived from HGMD Professional and population allele frequencies derived from public and Variantyx allele frequency databases. Single base pair resolution enables easy visual inspection of potentially causal variants using the IGV genome browser as well as easy biochemical validation via PCR. Analytical and clinical sensitivity and specificity of the pipeline has been validated using analysis of Genome in a Bottle reference genomes and known positive samples confirmed by orthogonal sequencing technologies. CONCLUSION: Consistent read depth of PCR-free WGS enables reliable detection of structural variants of any size. Annotation both on gene and variant level allows clinicians to match reported patient phenotype with detected variants and confidently report causative finding in all clinical cases used for validation.


Assuntos
Variação Genética , Sequenciamento Completo do Genoma/métodos , Frequência do Gene , Humanos , Anotação de Sequência Molecular , Fenótipo , Reprodutibilidade dos Testes
3.
BMC Genomics ; 17 Suppl 2: 393, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27357948

RESUMO

BACKGROUND: The regulatory effect of inherited or de novo genetic variants occurring in promoters as well as in transcribed or even coding gene regions is gaining greater recognition as a contributing factor to disease processes in addition to mutations affecting protein functionality. Thousands of such regulatory mutations are already recorded in HGMD, OMIM, ClinVar and other databases containing published disease causing and associated mutations. It is therefore important to properly annotate genetic variants occurring in experimentally verified and predicted transcription factor binding sites (TFBS) that could thus influence the factor binding event. Selection of the promoter sequence used is an important factor in the analysis as it directly influences the composition of the sequence available for transcription factor binding analysis. RESULTS: In this study we first establish genomic regions likely to be involved in regulation of gene expression. TRANSFAC uses a method of virtual transcription start sites (vTSS) calculation to define the best supported promoter for a gene. We have performed a comparison of the virtually calculated promoters between the best supported and secondary promoters in hg19 and hg38 reference genomes to test and validate the approach. Next we create and utilize a workflow for systematic analysis of casual disease associated variants in TFBS using Genome Trax and TRANSFAC databases. A total of 841 and 736 experimentally verified TFBSs within best supported promoters were mapped over HGMD and ClinVar mutation sites respectively. Tens of thousands of predicted ChIP-Seq derived TFBSs were mapped over mutations as well. We have further analyzed some of these mutations for potential gain or loss in transcription factor binding. CONCLUSIONS: We have confirmed the validity of TRANSFAC's approach to define the best supported promoters and established a workflow of their use in annotation of regulatory genetic variants.


Assuntos
Expressão Gênica , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Humanos , Anotação de Sequência Molecular , Ligação Proteica , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição
4.
Biochim Biophys Acta ; 1833(5): 976-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23360980

RESUMO

C-Raf is a member of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) signaling pathway that plays key roles in diverse physiological processes and is upregulated in many human cancers. C-Raf activation involves binding to Ras, increased phosphorylation and interactions with co-factors. Here, we describe a Ras-independent in vivo pathway for C-Raf activation by its downstream target MEK. Using (32)P-metabolic labeling and 2D-phosphopeptide mapping experiments, we show that MEK increases C-Raf phosphorylation by up-to 10-fold. This increase was associated with C-Raf kinase activation, matching the activity seen with growth factor stimulation. Consequently, coexpression of wildtype C-Raf and MEK was sufficient for full and constitutive activation of ERK. Notably, the ability of MEK to activate C-Raf was completely Ras independent, since mutants impaired in Ras binding that are irresponsive to growth factors or Ras were fully activated by MEK. The ability of MEK to activate C-Raf was only partially dependent on MEK kinase activity but required MEK binding to C-Raf, suggesting that the binding results in a conformational change that increases C-Raf susceptibility to phosphorylation and activation or in the stabilization of the phosphorylated-active form. These findings propose a novel Ras-independent mechanism for activating the C-Raf and the MAPK pathway without the need for mutations in the pathway. This mechanism could be of significance in pathological conditions or cancers overexpressing C-Raf and MEK or in conditions where C-Raf-MEK interaction is enhanced due to the down-regulation of RKIP and MST2.


Assuntos
MAP Quinase Quinase 1/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Células COS , Divisão Celular , Chlorocebus aethiops , Regulação para Baixo , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Fosforilação , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
5.
Front Genet ; 14: 1145285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152986

RESUMO

Technological advances in Next-Generation Sequencing dramatically increased clinical efficiency of genetic testing, allowing detection of a wide variety of variants, from single nucleotide events to large structural aberrations. Whole Genome Sequencing (WGS) has allowed exploration of areas of the genome that might not have been targeted by other approaches, such as intergenic regions. A single technique detecting all genetic variants at once is intended to expedite the diagnostic process while making it more comprehensive and efficient. Nevertheless, there are still several shortcomings that cannot be effectively addressed by short read sequencing, such as determination of the precise size of short tandem repeat (STR) expansions, phasing of potentially compound recessive variants, resolution of some structural variants and exact determination of their boundaries, etc. Therefore, in some cases variants can only be tentatively detected by short reads sequencing and require orthogonal confirmation, particularly for clinical reporting purposes. Moreover, certain regulatory authorities, for example, New York state CLIA, require orthogonal confirmation of every reportable variant. Such orthogonal confirmations often involve numerous different techniques, not necessarily available in the same laboratory and not always performed in an expedited manner, thus negating the advantages of "one-technique-for-all" approach, and making the process lengthy, prone to logistical and analytical faults, and financially inefficient. Fortunately, those weak spots of short read sequencing can be compensated by long read technology that have comparable or better detection of some types of variants while lacking the mentioned above limitations of short read sequencing. At Variantyx we have developed an integrated clinical genetic testing approach, augmenting short read WGS-based variant detection with Oxford Nanopore Technologies (ONT) long read sequencing, providing simultaneous orthogonal confirmation of all types of variants with the additional benefit of improved identification of exact size and position of the detected aberrations. The validation study of this augmented test has demonstrated that Oxford Nanopore Technologies sequencing can efficiently verify multiple types of reportable variants, thus ensuring highly reliable detection and a quick turnaround time for WGS-based clinical genetic testing.

6.
Crit Rev Eukaryot Gene Expr ; 22(3): 249-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23140166

RESUMO

Maspin, a class II tumor suppressor, is often downregulated during tumor progression and its depletion from the nucleus is associated with poor prognosis. Recently, we reported that reintroduction of maspin is sufficient for redifferentiation of prostate cancer cells to epithelial phenotype, a reversal of epithelial-to-mesenchymal transition. We have linked this effect of maspin with its ability to directly inhibit HDAC1, thereby influencing the acetylation state of transcription factors and other proteins. Maspin overexpression leads to changes in the expression level of a large number of proteins and these changes are often microenvironment specific. In this review, we summarize the epigenetic effects of maspin and provide comprehensive bioinformatic analysis of microarray-derived gene expression changes caused by maspin in different microenvironments. The analysis was performed on multiple levels, including identification of statistically enriched gene ontology groups, detection of overreprepresented transcription factors binding sites in promoters of differentially expressed genes, followed by searching for key nodes of regulatory networks controlling these transcription factors. The results are consistent with our hypothesis that maspin serves as an endogenous regulator of HDAC activity and suggest that the effect of maspin is primarily mediated by TGFß, ß-catenin/E-cadherin pathways, and network key nodes such as Abl kinase, p62, IL1, and caspases 6 and 8.


Assuntos
Células Epiteliais/metabolismo , Genes Supressores de Tumor , Histona Desacetilase 1/metabolismo , Homeostase/genética , Serpinas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Células Epiteliais/patologia , Regulação da Expressão Gênica , Histona Desacetilase 1/genética , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Serpinas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Curr Alzheimer Res ; 19(10): 694-707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278440

RESUMO

BACKGROUND: The clinical characteristics of symptomatic and asymptomatic carriers of early- onset autosomal dominant Alzheimer's (EOADAD) due to a yet-undescribed chromosomal rearrangement may add to the available body of knowledge about Alzheimer's disease and may enlighten novel and modifier genes. We report the clinical and genetic characteristics of asymptomatic and symptomatic individuals carrying a novel APP duplication rearrangement. METHODS: Individuals belonging to a seven-generation pedigree with familial cognitive decline or intracerebral hemorrhages were recruited. Participants underwent medical, neurological, and neuropsychological evaluations. The genetic analysis included chromosomal microarray, Karyotype, fluorescence in situ hybridization, and whole genome sequencing. RESULTS: Of 68 individuals, six females presented with dementia, and four males presented with intracerebral hemorrhage. Of these, nine were found to carry Chromosome 21 copy number gain (chr21:27,224,097-27,871,284, GRCh37/hg19) including the APP locus (APP-dup). In seven, Chromosome 5 copy number gain (Chr5: 24,786,234-29,446,070, GRCh37/hg19) (Chr5-CNG) cosegregated with the APP-dup. Both duplications co-localized to chromosome 18q21.1 and segregated in 25 pre-symptomatic carriers. Compared to non-carriers, asymptomatic carriers manifested cognitive decline in their mid-thirties. A third of the affected individuals carried a diagnosis of a dis-immune condition. CONCLUSION: APP extra dosage, even in isolation and when located outside chromosome 21, is pathogenic. The clinical presentation of APP duplication varies and may be gender specific, i.e., ICH in males and cognitive-behavioral deterioration in females. The association with immune disorders is presently unclear but may prove relevant. The implication of Chr5-CNG co-segregation and the surrounding chromosome 18 genetic sequence needs further clarification.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Feminino , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Estudos Transversais , Hibridização in Situ Fluorescente , Linhagem
8.
Nat Chem Biol ; 4(2): 113-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18176558

RESUMO

Thiamine diphosphate (ThDP), a derivative of vitamin B1, is an enzymatic cofactor whose special chemical properties allow it to play critical mechanistic roles in a number of essential metabolic enzymes. It has been assumed that all ThDP-dependent enzymes exploit a polar interaction between a strictly conserved glutamate and the N1' of the ThDP moiety. The crystal structure of glyoxylate carboligase challenges this paradigm by revealing that valine replaces the conserved glutamate. Through kinetic, spectroscopic and site-directed mutagenesis studies, we show that although this extreme change lowers the rate of the initial step of the enzymatic reaction, it ensures efficient progress through subsequent steps. Glyoxylate carboligase thus provides a unique illustration of the fine tuning between catalytic stages imposed during evolution on enzymes catalyzing multistep processes.


Assuntos
Carboxiliases/química , Carboxiliases/metabolismo , Glutamatos/química , Glutamatos/metabolismo , Tiamina/química , Tiamina/metabolismo , Sítios de Ligação , Carboxiliases/genética , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Modelos Moleculares , Mutação/genética , Fosfatos/química , Estrutura Terciária de Proteína , Tiamina/análogos & derivados , Tiazóis/química , Tiazóis/metabolismo , Valina/genética , Valina/metabolismo
9.
J Pers Med ; 11(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383702

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous condition with a complex genetic etiology. The objective of this study is to identify the complex genetic factors that underlie the ASD phenotype and other clinical features of Professor Temple Grandin, an animal scientist and woman with high-functioning ASD. Identifying the underlying genetic cause for ASD can impact medical management, personalize services and treatment, and uncover other medical risks that are associated with the genetic diagnosis. Prof. Grandin underwent chromosomal microarray analysis, whole exome sequencing, and whole genome sequencing, as well as a comprehensive clinical and family history intake. The raw data were analyzed in order to identify possible genotype-phenotype correlations. Genetic testing identified variants in three genes (SHANK2, ALX1, and RELN) that are candidate risk factors for ASD. We identified variants in MEFV and WNT10A, reported to be disease-associated in previous studies, which are likely to contribute to some of her additional clinical features. Moreover, candidate variants in genes encoding metabolic enzymes and transporters were identified, some of which suggest potential therapies. This case report describes the genomic findings in Prof. Grandin and it serves as an example to discuss state-of-the-art clinical diagnostics for individuals with ASD, as well as the medical, logistical, and economic hurdles that are involved in clinical genetic testing for an individual on the autism spectrum.

10.
Biochim Biophys Acta ; 1784(9): 1271-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18513495

RESUMO

Gram-negative bacteria can bind complement protein C1q in an antibody-independent manner and activate classical pathway via their lipopolysaccharides (LPS). Earlier studies have implicated the collagen-like region of human C1q in binding LPS. In recent years, a number of C1q target molecules, previously considered to interact with collagen-like region of C1q, have been shown to bind via the globular domain (gC1q). Here we report, using recombinant forms of the globular head regions of C1q A, B and C chains, that LPS derived from Salmonella typhimurium interact specifically with the B-chain of the gC1q domain in a calcium-dependent manner. LPS and IgG-binding sites on the gC1q domain appear to be overlapping and this interaction can be inhibited by a synthetic C1q inhibitor, suggesting common interacting mechanisms.


Assuntos
Complemento C1q/química , Complemento C1q/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Ativação do Complemento , Complemento C1q/genética , Humanos , Imunoglobulina G/metabolismo , Técnicas In Vitro , Cinética , Lipopolissacarídeos/imunologia , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Salmonella typhimurium/química , Salmonella typhimurium/imunologia , Triterpenos/farmacologia
11.
Mol Biol Cell ; 17(3): 1141-53, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16407412

RESUMO

The Ras-Raf-mitogen-activated protein kinase cascade is a key growth-signaling pathway, which uncontrolled activation results in transformation. Although the exact mechanisms underlying Raf-1 regulation remain incompletely understood, phosphorylation has been proposed to play a critical role in this regulation. We report here three novel epidermal growth factor-induced in vivo Raf-1 phosphorylation sites that mediate positive feedback Raf-1 regulation. Using mass spectrometry, we identified Raf-1 phosphorylation on three SP motif sites: S289/S296/S301 and confirmed their identity using two-dimensional-phosphopeptide mapping and phosphospecific antibodies. These sites were phosphorylated by extracellular signal-regulated kinase (ERK)-1 in vitro, and their phosphorylation in vivo was dependent on endogenous ERK activity. Functionally, ERK-1 expression sustains Raf-1 activation in a manner dependent on Raf-1 phosphorylation on the identified sites, and S289/296/301A substitution markedly decreases the in vivo activity of Raf-1 S259A. Importantly, the ERK-phosphorylated Raf-1 pool has 4 times higher specific kinase activity than total Raf-1, and its phosphopeptide composition is similar to that of the general Raf-1 population, suggesting that the preexisting, phosphorylated Raf-1, representing the activatable Raf-1 pool, is the Raf-1 subpopulation targeted by ERK. Our study describes the identification of new in vivo Raf-1 phosphorylation sites targeted by ERK and provides a novel mechanism for a positive feedback Raf-1 regulation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Fosfo-Específicos/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Fator de Crescimento Epidérmico/farmacologia , Expressão Gênica , MAP Quinase Quinase Quinases/antagonistas & inibidores , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/genética , Serina/metabolismo
12.
Biochim Biophys Acta ; 1773(3): 450-6, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17137646

RESUMO

In budding yeast, commitment to DNA replication during the normal cell cycle requires degradation of the cyclin-dependent kinase (CDK) inhibitor Sic1. The G1 cyclin-CDK complexes Cln1-Cdk1 and Cln2-Cdk1 initiate the process of Sic1 removal by directly catalyzing Sic1 phosphorylation at multiple sites. Commitment to DNA replication during meiosis also appears to require Sic1 degradation, but the G1 cyclin-CDK complexes are not involved. It has been proposed that the meiosis-specific protein kinase Ime2 functionally replaces the G1 cyclin-CDK complexes to promote Sic1 destruction. To investigate this possibility, we compared Cln2-Cdk1 and Ime2 protein kinase activities in vitro. Both enzyme preparations were capable of catalyzing phosphorylation of a GST-Sic1 fusion protein, but the phosphoisomers generated by the two activities had significantly different electrophoretic mobilities. Furthermore, mutation of consensus CDK phosphorylation sites in Sic1 affected Cln2-Cdk1- but not Ime2-dependent phosphorylation. Phosphoamino acid analysis and phosphopeptide mapping provided additional evidence that Cln2-Cdk1 and Ime2 targeted different residues within Sic1. Examination of other substrates both in vitro and in vivo also revealed differing specificities. These results indicate that Ime2 does not simply replace G1 cyclin-CDK complexes in promoting Sic1 degradation during meiosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina , Peptídeos e Proteínas de Sinalização Intracelular , Mutação/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
Biochim Biophys Acta ; 1773(8): 1196-212, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17555829

RESUMO

The Ras-Raf-MAPK pathway regulates diverse physiological processes by transmitting signals from membrane based receptors to various nuclear, cytoplasmic and membrane-bound targets, coordinating a large variety of cellular responses. Function of Raf family kinases has been shown to play a role during organism development, cell cycle regulation, cell proliferation and differentiation, cell survival and apoptosis and many other cellular and physiological processes. Aberrations along the Ras-Raf-MAPK pathway play an integral role in various biological processes concerning human health and disease. Overexpression or activation of the pathway components is a common indicator in proliferative diseases such as cancer and contributes to tumor initiation, progression and metastasis. In this review, we focus on the physiological roles of Raf kinases in normal and disease conditions, specifically cancer, and the current thoughts on Raf regulation.


Assuntos
Neoplasias/enzimologia , Quinases raf/fisiologia , Sequência de Aminoácidos , Animais , Apoptose , Diferenciação Celular , Células Cultivadas , Humanos , Invertebrados , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Dados de Sequência Molecular , Neoplasias/etiologia , Neoplasias/genética , Neoplasias/terapia , Oncogenes , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Quinases raf/antagonistas & inibidores , Quinases raf/química , Quinases raf/genética
14.
Biochim Biophys Acta ; 1760(3): 356-63, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16326011

RESUMO

AHAS I is an isozyme of acetohydroxyacid synthase which is apparently unique to enterobacteria. It has been known for over 20 years that it has many properties which are quite different from those of the other two enterobacterial AHASs isozymes, as well as from those of "typical" AHASs which are single enzymes in a given organism. These include a unique mechanism for regulation of expression and the absence of a preference for forming acetohydroxybutyrate. We have cloned the two subunits, ilvB and ilvN, of this Escherichia coli isoenzyme and examined the enzymatic properties of the purified holoenzyme and the enzyme reconstituted from purified subunits. Unlike other AHASs, AHAS I demonstrates cooperative feedback inhibition by valine, and the kinetics fit closely to an exclusive binding model. The formation of acetolactate by AHAS I is readily reversible and acetolactate can act as substrate for alternative AHAS I-catalyzed reactions.


Assuntos
Acetolactato Sintase/metabolismo , Proteínas de Escherichia coli/metabolismo , Acetolactato Sintase/biossíntese , Acetolactato Sintase/genética , Acetona/análogos & derivados , Acetona/metabolismo , Clonagem Molecular , Escherichia coli/enzimologia , Retroalimentação Fisiológica , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Isomerismo , Cinética , Valina/farmacologia
15.
J Mol Biol ; 357(3): 951-63, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16458324

RESUMO

The enzyme acetohydroxyacid synthase (AHAS) catalyses the first common step in the biosynthesis of the three branched-chain amino acids. Enzymes in the AHAS family generally consist of regulatory and catalytic subunits. Here, we describe the first crystal structure of an AHAS regulatory subunit, the ilvH polypeptide, determined at a resolution of 1.75 A. IlvH is the regulatory subunit of one of three AHAS isozymes expressed in Escherichia coli, AHAS III. The protein is a dimer, with two beta alpha beta beta alpha beta ferredoxin domains in each monomer. The two N-terminal domains assemble to form an ACT domain structure remarkably close to the one predicted by us on the basis of the regulatory domain of 3-phosphoglycerate dehydrogenase (3PGDH). The two C-terminal domains combine so that their beta-sheets are roughly positioned back-to-back and perpendicular to the extended beta-sheet of the N-terminal ACT domain. On the basis of the properties of mutants and a comparison with 3PGDH, the effector (valine) binding sites can be located tentatively in two symmetrically related positions in the interface between a pair of N-terminal domains. The properties of mutants of the ilvH polypeptide outside the putative effector-binding site provide further insight into the functioning of the holoenzyme. The results of this study open avenues for further studies aimed at understanding the mechanism of regulation of AHAS by small-molecule effectors.


Assuntos
Acetolactato Sintase/química , Proteínas de Escherichia coli/química , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Cristalografia por Raios X , Dimerização , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Polietilenoglicóis/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Valina/metabolismo
16.
Oncotarget ; 8(5): 8043-8056, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28009978

RESUMO

Maspin is an epithelial-specific tumor suppressor shown to exert its biological effects as an intracellular, cell membrane-associated, and secreted free molecule. A recent study suggests that upon DNA-damaging g-irradiation, tumor cells can secrete maspin as an exosome-associated protein. To date, the biological significance of exosomal secretion of maspin is unknown. The current study aims at addressing whether maspin is spontaneously secreted as an exosomal protein to regulate tumor/stromal interactions. We prepared exosomes along with cell extracts and vesicle-depleted conditioned media (VDCM) from normal epithelial (CRL2221, MCF-10A and BEAS-2B) and cancer (LNCaP, PC3 and SUM149) cell lines. Atomic force microscopy and dynamic light scattering analysis revealed similar size distribution patterns and surface zeta potentials between the normal cells-derived and tumor cells-derived exosomes. Electron microscopy revealed that maspin was encapsulated by the exosomal membrane as a cargo protein. While western blotting revealed that the level of exosomal maspin from tumor cell lines was disproportionally lower relative to the levels of corresponding intracellular and VDCM maspin, as compared to that from normal cell lines, maspin knockdown in MCF-10A cells led to maspin-devoid exosomes, which exhibited significantly reduced suppressive effects on the chemotaxis activity of recipient NIH3T3 fibroblast cells. These data are the first to demonstrate the potential of maspin delivered by exosomes to block tumor-induced stromal response, and support the clinical application of exosomal maspin in cancer diagnosis and treatment.


Assuntos
Células Epiteliais/metabolismo , Exossomos/metabolismo , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias da Próstata/metabolismo , Serpinas/metabolismo , Células Estromais/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Quimiotaxia , Células Epiteliais/ultraestrutura , Exossomos/ultraestrutura , Feminino , Humanos , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/ultraestrutura , Masculino , Camundongos , Células NIH 3T3 , Comunicação Parácrina , Neoplasias da Próstata/genética , Neoplasias da Próstata/ultraestrutura , Transporte Proteico , Interferência de RNA , Serpinas/genética , Células Estromais/ultraestrutura , Transfecção , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética
17.
Drug Discov Today ; 10(22): 1535-42, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16257376

RESUMO

Undesired activation of the complement system, a part of the immune system, is a major pathogenic factor contributing to various diseases, such as ischemia-reperfusion injury, sepsis, asthma, allergic reactions, rheumatoid arthritis, Alzheimer's disease, myasthenia, multiple sclerosis and others. The history of the development of complement system inhibitors, preventing its destructive action on the body, represents the evolution of the main methods of drug design. This review illustrates the main approaches of drug design, ranging from screening and modification of natural products to structure-based ligand design, on the basis of complement inhibitors' creation. The current status of the field of complement inhibitors is also discussed.


Assuntos
Proteínas do Sistema Complemento/imunologia , Desenho de Fármacos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Fatores Biológicos/farmacologia , Fatores Biológicos/uso terapêutico , Proteínas do Sistema Complemento/metabolismo , Humanos , Ligantes , Estrutura Molecular , Biblioteca de Peptídeos , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
18.
Mol Immunol ; 39(7-8): 413-22, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12413692

RESUMO

Unilamellar liposomes with incorporated hapten-phospholipid conjugates were proposed as models of polyvalent antigens with migrating determinants for quantitative analysis of their interaction with antibodies. The monovalent pesticide atrazine was used as a model antigen. For its incorporation into the lipid bilayer, the atrazine carboxylated derivative was conjugated with dimyristoylphosphatidylethanolamine (DMPE). Unilamellar liposomes were prepared with dimyristoylphosphatidylcholine/atrazine-DMPE at molar ratios of 90:10, 95:5, 98:2, 99:1 and 99.5:0.5. Their interaction with the peroxidase-labeled anti-atrazine antibodies was studied by enzyme immunoassay and polarization fluoroimmunoassay techniques. It was shown that the increase in hapten content in the liposomes from 0.5 to 10 mol% led to an increase in the equilibrium constants of the interaction with antibodies from 0.093 x 10(8) to 0.303 x 10(8)M-1. The association rate constants varied from 1.45 x 10(5) to 15.5 x 10(5)M-1 s-1 depending on the antigen content in liposomes and experimental conditions. The measured constants were applied for a mathematical model describing multi-step interaction between antibodies and polyvalent liposomal antigens. The model adequately describes the quantitative regularities of the influence of antigen content and the affinity of immunochemical interaction on the quantity and the dynamics of the immune complexes forming.


Assuntos
Reações Antígeno-Anticorpo , Animais , Ligação Competitiva , Ensaio de Imunoadsorção Enzimática , Polarização de Fluorescência , Imunoglobulina G/imunologia , Cinética , Lipossomos , Matemática , Modelos Imunológicos , Coelhos
19.
Cancer Res ; 75(18): 3970-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26208903

RESUMO

Future curative cancer chemotherapies have to overcome tumor cell heterogeneity and plasticity. To test the hypothesis that the tumor suppressor maspin may reduce microenvironment-dependent prostate tumor cell plasticity and thereby modulate drug sensitivity, we established a new schematic combination of two-dimensional (2D), three-dimensional (3D), and suspension cultures to enrich prostate cancer cell subpopulations with distinct differentiation potentials. We report here that depending on the level of maspin expression, tumor cells in suspension and 3D collagen I manifest the phenotypes of stem-like and dormant tumor cell populations, respectively. In suspension, the surviving maspin-expressing tumor cells lost the self-renewal capacity, underwent senescence, lost the ability to dedifferentiate in vitro, and failed to generate tumors in vivo. Maspin-nonexpressing tumor cells that survived the suspension culture in compact tumorspheres displayed a higher level of stem cell marker expression, maintained the self-renewal capacity, formed tumorspheres in 3D matrices in vitro, and were tumorigenic in vivo. The drug sensitivities of the distinct cell subpopulations depend on the drug target and the differentiation state of the cells. In 2D, docetaxel, MS275, and salinomycin were all cytotoxic. In suspension, while MS275 and salinomycin were toxic, docetaxel showed no effect. Interestingly, cells adapted to 3D collagen I were only responsive to salinomycin. Maspin expression correlated with higher sensitivity to MS275 in both 2D and suspension and to salinomycin in 2D and 3D collagen I. Our data suggest that maspin reduces prostate tumor cell plasticity and enhances tumor sensitivity to salinomycin, which may hold promise in overcoming tumor cell heterogeneity and plasticity.


Assuntos
Adenocarcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias da Próstata/metabolismo , Serpinas/fisiologia , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Desdiferenciação Celular/fisiologia , Linhagem Celular Tumoral , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/fisiologia , Autorrenovação Celular/fisiologia , Senescência Celular , Docetaxel , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Neoplasias da Próstata/patologia , Piranos/farmacologia , Piridinas/farmacologia , Suspensões , Taxoides/farmacologia , Microambiente Tumoral
20.
Oncotarget ; 5(22): 11225-36, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25373490

RESUMO

The goal of the current study is to examine the biological effects of epithelial-specific tumor suppressor maspin on tumor host immune response. Accumulated evidence demonstrates an anti-tumor effect of maspin on tumor growth, invasion and metastasis. The molecular mechanism underlying these biological functions of maspin is thought to be through histone deacetylase inhibition, key to the maintenance of differentiated epithelial phenotype. Since tumor-driven stromal reactivities co-evolve in tumor progression and metastasis, it is not surprising that maspin expression in tumor cells inhibits extracellular matrix degradation, increases fibrosis and blocks hypoxia-induced angiogenesis. Using the athymic nude mouse model capable of supporting the growth and progression of xenogeneic human prostate cancer cells, we further demonstrate that maspin expression in tumor cells elicits neutrophil- and B cells-dependent host tumor immunogenicity. Specifically, mice bearing maspin-expressing tumors exhibited increased systemic and intratumoral neutrophil maturation, activation and antibody-dependent cytotoxicity, and decreased peritumoral lymphangiogenesis. These results reveal a novel biological function of maspin in directing host immunity towards tumor elimination that helps explain the significant reduction of xenograft tumor incidence in vivo and the clinical correlation of maspin with better prognosis of several types of cancer. Taken together, our data raised the possibility for novel maspin-based cancer immunotherapies.


Assuntos
Neoplasias da Próstata/imunologia , Serpinas/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Serpinas/biossíntese , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA