Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7535, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553457

RESUMO

Cells in obligately multicellular organisms by definition have aligned fitness interests, minimum conflict, and cannot reproduce independently. However, some cells eat other cells within the same body, sometimes called cell cannibalism. Such cell-in-cell events have not been thoroughly discussed in the framework of major transitions to multicellularity. We performed a systematic screening of 508 articles, from which we chose 115 relevant articles in a search for cell-in-cell events across the tree of life, the age of cell-in-cell-related genes, and whether cell-in-cell events are associated with normal multicellular development or cancer. Cell-in-cell events are found across the tree of life, from some unicellular to many multicellular organisms, including non-neoplastic and neoplastic tissue. Additionally, out of the 38 cell-in-cell-related genes found in the literature, 14 genes were over 2.2 billion years old, i.e., older than the common ancestor of some facultatively multicellular taxa. All of this suggests that cell-in-cell events may have originated before the origins of obligate multicellularity. Thus, our results show that cell-in-cell events exist in obligate multicellular organisms, but are not a defining feature of them. The idea of eradicating cell-in-cell events from obligate multicellular organisms as a way of treating cancer, without considering that cell-in-cell events are also part of normal development, should be abandoned.


Assuntos
Evolução Biológica , Neoplasias , Humanos , Pré-Escolar
2.
Res Sq ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37841858

RESUMO

Cells in obligately multicellular organisms by definition have aligned fitness interests, minimum conflict, and cannot reproduce independently. However, some cells eat other cells within the same body, sometimes called cell cannibalism. Such cell-in-cell events have not been thoroughly discussed in the framework of major transitions to multicellularity. We performed a systematic review of 508 articles to search for cell-in-cell events across the tree of life, the age of cell-in-cell-related genes, and whether cell-in-cell events are associated with normal multicellular development or cancer. Out of the 38 cell-in-cell-related genes found in the literature, 14 genes were over 2.2 billion years old, i.e., older than the common ancestor of some facultatively multicellular taxa. Therefore, we propose that cell-in-cell events originated before the origins of obligate multicellularity. Cell-in-cell events are found almost everywhere: across some unicellular and many multicellular organisms, mostly in malignant rather than benign tissue, and in non-neoplastic cells. Thus, our results show that cell-in-cell events exist in obligate multicellular organisms, but are not a defining feature of them. The idea of eradicating cell-in-cell events from obligate multicellular organisms as a way of treating cancer, without considering that cell-in-cell events are also part of normal development, should be abandoned.

3.
PLoS One ; 18(6): e0287901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384647

RESUMO

Chimerism is a widespread phenomenon across the tree of life. It is defined as a multicellular organism composed of cells from other genetically distinct entities. This ability to 'tolerate' non-self cells may be linked to susceptibility to diseases like cancer. Here we test whether chimerism is associated with cancers across obligately multicellular organisms in the tree of life. We classified 12 obligately multicellular taxa from lowest to highest chimerism levels based on the existing literature on the presence of chimerism in these species. We then tested for associations of chimerism with tumour invasiveness, neoplasia (benign or malignant) prevalence and malignancy prevalence in 11 terrestrial mammalian species. We found that taxa with higher levels of chimerism have higher tumour invasiveness, though there was no association between malignancy or neoplasia and chimerism among mammals. This suggests that there may be an important biological relationship between chimerism and susceptibility to tissue invasion by cancerous cells. Studying chimerism might help us identify mechanisms underlying invasive cancers and also could provide insights into the detection and management of emerging transmissible cancers.


Assuntos
Quimerismo , Neoplasias , Animais , Neoplasias/genética , Mamíferos
4.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577544

RESUMO

Could diet and mean plasma glucose concentration (MPGluC) explain the variation in cancer prevalence across species? We collected diet, MPGluC, and neoplasia data for 160 vertebrate species from existing databases. We found that MPGluC negatively correlates with cancer and neoplasia prevalence, mostly of gastrointestinal organs. Trophic level positively correlates with cancer and neoplasia prevalence even after controlling for species MPGluC. Most species with high MPGluC (50/78 species = 64.1%) were birds. Most species in high trophic levels (42/53 species = 79.2%) were reptiles and mammals. Our results may be explained by the evolution of insulin resistance in birds which selected for loss or downregulation of genes related to insulin-mediated glucose import in cells. This led to higher MPGluC, intracellular caloric restriction, production of fewer reactive oxygen species and inflammatory cytokines, and longer telomeres contributing to longer longevity and lower neoplasia prevalence in extant birds relative to other vertebrates.

5.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824773

RESUMO

Cancer is a disease that affects nearly all multicellular life, including birds. However, little is known about what factors explain the variance in cancer prevalence among species. Litter size is positively correlated with cancer prevalence in managed species of mammals, and larger body size, but not incubation or nestling period, is linked to tumor prevalence in wild birds. Also, birds that produce more elaborate sexual traits are expected to have fewer resources for cancer defenses and thus higher cancer prevalence. In this study, we examined whether cancer prevalence is associated with a wide variety of life history traits (clutch size, incubation length, body mass, lifespan, and the extent of sexual dimorphism) across 108 species of managed birds in 25 different zoological facilities, sanctuaries, and veterinary clinics. We found that clutch size was positively correlated with cancer and neoplasia (both benign and malignant) prevalence, even after controlling for body mass. Cancer prevalence was not associated with incubation length, body mass, lifespan, or sexual dimorphism. The positive correlations of clutch size with cancer prevalence and neoplasia prevalence suggest that there may be life-history trade-offs between reproductive investment and somatic maintenance (in the form of cancer prevention mechanisms) in managed birds.

6.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824942

RESUMO

Cancer is pervasive across multicellular species. Are there any patterns that can explain differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight and decreases with gestation time, contrary to Peto’s Paradox. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%) the black-footed penguin (<0.4%), ferrets (63%) and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer.

7.
Res Sq ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461608

RESUMO

Cancer is pervasive across multicellular species, but what explains differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight (contrary to Peto's Paradox) and somatic mutation rate, but decreases with gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%) the black-footed penguin (<0.4%), ferrets (63%) and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer.

8.
Curr Nutr Rep ; 11(3): 508-525, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704266

RESUMO

PURPOSE OF REVIEW: Cancers are a leading cause of death in humans and for many other species. Diet has often been associated with cancers, and the microbiome is an essential mediator between diet and cancers. Here, we review the work on cancer and the microbiome across species to search for broad patterns of susceptibility associated with different microbial species. RECENT FINDINGS: Some microbes, such as Helicobacter bacteria, papillomaviruses, and the carnivore-associated Fusobacteria, consistently induce tumorigenesis in humans and other species. Other microbes, such as the milk-associated Lactobacillus, consistently inhibit tumorigenesis in humans and other species. We systematically reviewed over a thousand published articles and identified links between diet, microbes, and cancers in several species of mammals, birds, and flies. Future work should examine a larger variety of host species to discover new model organisms for human preclinical trials, to better understand the observed variance in cancer prevalence across species, and to discover which microbes and diets are associated with cancers across species. Ultimately, this could help identify microbial and dietary interventions to diagnose, prevent, and treat cancers in humans as well as other animals.


Assuntos
Microbiota , Neoplasias , Animais , Carcinogênese , Dieta , Humanos , Mamíferos/microbiologia
9.
Evolution ; 73(6): 1296-1308, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30883720

RESUMO

The first step in the evolution of complex multicellular organisms involves single cells forming a cooperative group. Consequently, to understand multicellularity, we need to understand the costs and benefits associated with multicellular group formation. We found that in the facultatively multicellular algae Chlorella sorokiniana: (1) the presence of the flagellate Ochromonas danica or the crustacean Daphnia magna leads to the formation of multicellular groups; (2) the formation of multicellular groups reduces predation by O. danica, but not by the larger predator D. magna; (3) under conditions of relatively low light intensity, where competition for light is greater, multicellular groups grow slower than single cells; (4) in the absence of live predators, the proportion of cells in multicellular groups decreases at a rate that does not vary with light intensity. These results can explain why, in cases such as this algae species, multicellular group formation is facultative, in response to the presence of predators.


Assuntos
Chlorella/fisiologia , Daphnia/fisiologia , Cadeia Alimentar , Características de História de Vida , Ochromonas/fisiologia , Comportamento Predatório , Animais , Evolução Biológica , Análise Custo-Benefício , Interações Microbianas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA