Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 14(3): e1002411, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27028365

RESUMO

Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.


Assuntos
Amônia/metabolismo , Aquaporinas/química , Proteínas de Arabidopsis/química , Aquaporinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Cristalização , Estrutura Molecular
2.
Nat Microbiol ; 2(12): 1616-1623, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29038444

RESUMO

The Gram-negative bacterial outer membrane (OM) is a unique bilayer that forms an efficient permeation barrier to protect the cell from noxious compounds 1,2 . The defining characteristic of the OM is lipid asymmetry, with phospholipids comprising the inner leaflet and lipopolysaccharides comprising the outer leaflet 1-3 . This asymmetry is maintained by the Mla pathway, a six-component system that is widespread in Gram-negative bacteria and is thought to mediate retrograde transport of misplaced phospholipids from the outer leaflet of the OM to the cytoplasmic membrane 4 . The OM lipoprotein MlaA performs the first step in this process via an unknown mechanism that does not require external energy input. Here we show, using X-ray crystallography, molecular dynamics simulations and in vitro and in vivo functional assays, that MlaA is a monomeric α-helical OM protein that functions as a phospholipid translocation channel, forming a ~20-Å-thick doughnut embedded in the inner leaflet of the OM with a central, amphipathic pore. This architecture prevents access of inner leaflet phospholipids to the pore, but allows outer leaflet phospholipids to bind to a pronounced ridge surrounding the channel, followed by diffusion towards the periplasmic space. Enterobacterial MlaA proteins form stable complexes with OmpF/C 5,6 , but the porins do not appear to play an active role in phospholipid transport. MlaA represents a lipid transport protein that selectively removes outer leaflet phospholipids to help maintain the essential barrier function of the bacterial OM.


Assuntos
Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/química , Lipídeos de Membrana/química , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Cristalografia por Raios X , DNA Bacteriano/genética , Difusão , Vetores Genéticos , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Bicamadas Lipídicas , Lipopolissacarídeos/química , Simulação de Dinâmica Molecular , Mutação , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Porinas/química , Conformação Proteica
3.
Phys Chem Chem Phys ; 11(26): 5253-62, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19551192

RESUMO

The phosphodiester linkage central to biological systems has been modeled by methyl phosphodiester (MPDE) in various theoretical and experimental studies. Under physiological conditions, hydrolysis of the phosphodiester is negligible, however this process can be catalyzed in the presence of metal ions. To understand the role of alkali metals in MPDE hydrolysis and, in particular, how it influences the reaction pathway and the associated energetics, density functional calculations employing the 6-31+G(d,p) basis set have been carried out. Different pathways that include the reactant, intermediates and the products have been investigated for MPDE hydrolysis catalyzed by one or two lithium ions, characterized as stationary point geometries on the potential energy surface. The pathways A and B incorporate a single lithium ion bonded to different oxygens of the diester functionality. In pathway C, a six-membered ring was noticed wherein the nucleophile bridges two lithium ions interacting with different oxygens of the phosphoryl group. Furthermore, in the pathway (D) incorporating two lithium ions, one of the lithium ions interacts with the hydroxyl group and another with the methoxy oxygen; both metal ions are coordinated by the same phosphoryl oxygen. In addition to this, yet another pathway (E), where the metal ions are bound to different oxygens of the phosphoryl group, has also been dealt with. The calculations have shown that the A and B pathways lead to a single step reaction. A three-step mechanism including the nucleophilic (hydroxyl) attack, rotation of a methyl group and, finally, departure of the methoxy group has been predicted for the D and E profiles. Both D and E pathways are favored equally (with a marginal difference of 0.3 kJ mol(-1) in their activation energies) in the gas phase and a transition state corresponding to nucleophilic attack with an energy barrier of 32.5 kJ mol(-1) was located when lithium was used. A penta-coordinated phosphorous intermediate on the potential energy surface was characterized along these pathways. MPDE hydrolysis yielded a lower energy barrier for lithium than those for the remaining alkali metal ions. This agrees well with the experimentally observed trend for the hydrolysis rates: Li > Na > K. Self consistent reaction field (SCRF) calculations reveal the lower energy barrier between the reactant and the transition state for the nucleophilic attack in nonpolar solvents. The extent of bond formation (or cleavage) in different stationary point structures along the reaction path as estimated from the electron density at the bond critical point in the molecular electron density topography, has proven useful in distinguishing the associative or dissociative reaction pathways.


Assuntos
Simulação por Computador , Metais Alcalinos/química , Organofosfatos/química , Hidrólise , Lítio/química , Modelos Moleculares , Estrutura Molecular , Potássio/química , Sódio/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA