Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(2): 734-41, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25495721

RESUMO

Predominant forms of food and energy systems pose multiple challenges to the environment as current configurations tend to be structured around centralized one-way through-put of materials and energy. In addition, these configurations can introduce vulnerability to input material price and supply shocks as well as contribute to localized food insecurity and lost opportunities for less environmentally harmful forms of local economic development. One proposed form of system transformation involves locally integrating "unclosed" material and energy loops from food and energy systems. Such systems, which have been termed integrated food-energy systems (IFES), have existed in diverse niche forms but have not been systematically studied with respect to technological, governance, and environmental differences. As a first step in this process, we have constructed a taxonomy of IFES archetypes by using exploratory data analysis on a collection of IFES cases. We find that IFES may be classified hierarchically first by their primary purpose­food or energy production­and subsequently by degree and direction of vertical supply chain coordination. We then use this taxonomy to delineate potential governance challenges and pose a research agenda aimed at understanding what role IFES may play in food and energy system transformation and ultimately what policies may encourage IFES adoption.


Assuntos
Conservação dos Recursos Naturais , Fontes Geradoras de Energia , Indústria Alimentícia , Agricultura , Algoritmos , Análise por Conglomerados , Abastecimento de Alimentos , Modelos Teóricos , Projetos de Pesquisa
2.
Artigo em Inglês | MEDLINE | ID: mdl-38980488

RESUMO

The rapid increase in aquaculture over the last several decades has led to concerns about the environmental impact of fish feeds relying on marine resources for fishmeal (FM). We aim to assess Nannochloropsis sp. QH25 co-product as a viable and sustainable replacement for FM in juvenile rainbow trout, Oncorhynchus mykiss, feeds. We formulated four experimental diets: a reference (FM based), 33N, 66N, and 100N diet (33%, 66%, and 100% co-product replacement). Rainbow trout were randomly assigned to one of 16 tanks and randomly assigned an experimental diet to consume throughout the experiment (64 days total), with four replicate tanks per diet. We compared the phosphorus (P) and nitrogen (N) digestibility, emissions, and growth between diets and, compared six environmental impacts (biotic resource use (BRU), global warming potential (GWP), water use, land use, marine eutrophication potential (MEP), and freshwater eutrophication potential (FEP)) of each diet. Our results indicate that replacing FM with co-product did not significantly alter growth. P digestibility of the experimental and reference diets was comparable. BRU conversion ratio was significantly lower in the experimental diets. However, there were significantly higher water and land use conversion ratios but insignificantly higher results in GWP, MEP, and FEP between the reference and 100N diet.

3.
Sci Rep ; 10(1): 19328, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184333

RESUMO

Aquafeed manufacturers have reduced, but not fully eliminated, fishmeal and fish oil and are seeking cost competitive replacements. We combined two commercially available microalgae, to produce a high-performing fish-free feed for Nile tilapia (Oreochromis niloticus)-the world's second largest group of farmed fish. We substituted protein-rich defatted biomass of Nannochloropsis oculata (leftover after oil extraction for nutraceuticals) for fishmeal and whole cells of docosahexaenoic acid (DHA)-rich Schizochytrium sp. as substitute for fish oil. We found significantly better (p < 0.05) growth, weight gain, specific growth rate, and best (but not significantly different) feed conversion ratio using the fish-free feed compared with the reference diet. Fish-free feed also yielded higher (p < 0.05) fillet lipid, DHA, and protein content (but not significantly different). Furthermore, fish-free feed had the highest degree of in-vitro protein hydrolysis and protein digestibility. The median economic conversion ratio of the fish-free feed ($0.95/kg tilapia) was less than the reference diet ($1.03/kg tilapia), though the median feed cost ($0.68/kg feed) was slightly greater than that of the reference feed ($0.64/kg feed) (p < 0.05). Our work is a step toward eliminating reliance on fishmeal and fish oil with evidence of a cost-competitive microalgae-based tilapia feed that improves growth metrics and the nutritional quality of farmed fish.


Assuntos
Ração Animal/economia , Produtos Pesqueiros/normas , Microalgas , Tilápia/fisiologia , Ração Animal/normas , Animais , Dieta , Ácidos Docosa-Hexaenoicos/metabolismo , Produtos Pesqueiros/economia , Proteínas de Peixes/metabolismo , Tilápia/crescimento & desenvolvimento , Aumento de Peso
4.
PLoS One ; 13(7): e0201315, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30063730

RESUMO

Microalgae companies increasingly seek markets for defatted biomass that is left over after extracting omega-3 rich oil for human nutraceuticals and crude oil for fuels. Such a protein-rich co-product is a promising alternative to unsustainably sourced fishmeal in aquaculture diets. We report the first evaluation of co-product of the marine microalga Nannochloropsis oculata (N. oculata co-product) for replacing fishmeal in diets of Nile tilapia, a globally important aquaculture species. We conducted a nutrient digestibility experiment with N. oculata dried whole cells and N. oculata co-product, followed by an 84-day nutritional feeding experiment with N. oculata co-product. N. oculata co-product, more nutrient-dense than whole cells, had the highest digestibility for lysine, an essential amino acid that is often deficient in terrestrial crop meals; and for 20:5 n-3 EPA, making it a good option for EPA supplementation in tilapia feed. N. oculata co-product, despite containing higher amounts of protein than whole cells, had significantly lower digestibility for crude protein than whole cells. Apparent digestibility coefficients (ADC) of methionine were significantly lower in N. oculata co-product than in whole cells. The nutritional feeding experiment compared diets with N. oculata co-product that replaced fishmeal as follows: 0% replacement in reference diet (fishmeal as 7% of total diet) and test diets with 33%, 66% and 100% replacement of fishmeal (3%, 5.5%, and 8% of total diet, respectively). Results showed the 33% replacement diet yielded fish growth, feed conversion, and survival similar to the reference diet. Reduced digestibility and growth at greater N. oculata co-product inclusion levels may have been due to higher levels of anti-nutrients in co-product than whole cells. All diets yielded a n3:n6 ratio of tilapia fillet that is favorable for human consumption. Depositions of macro minerals and several trace elements in the fillet were not significantly different across diets. Thus, N. oculata co-product, when replacing 33% of fishmeal in tilapia feed, led to fish performance and flesh composition comparable to that of fish fed the reference diet, but its nutrient digestibility needs to be improved to achieve higher replacement levels.


Assuntos
Ração Animal , Pesqueiros , Microalgas/química , Estramenópilas/química , Tilápia/crescimento & desenvolvimento , Animais
5.
PLoS One ; 12(7): e0181617, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750077

RESUMO

Social and ecological systems come together during the act of fishing. However, we often lack a deep understanding of the fishing process, despite its importance for understanding and managing fisheries. A quantitative, mechanistic understanding of the opportunities fishers encounter, the constraints they face, and how they make decisions within the context of opportunities and constraints will enhance the design of fisheries management strategies to meet linked ecological and social objectives and will improve scientific capacity to predict impacts of different strategies. We examined the case of spearfishing in a Caribbean coral reef fishery. We mounted cameras on fishers' spearguns to observe the fish they encountered, what limited their ability to catch fish, and how they made decisions about which fish to target. We observed spearfishers who dove with and without the assistance of compressed air, and compared the fishing process of each method using content analysis of videos and decision models of fishers' targeting selections. Compressor divers encountered more fish, took less time to catch each fish, and had a higher rate of successful pursuits. We also analyzed differences among taxa in this multispecies fishery, because some taxa are known to be ecologically or economically more valuable than others. Parrotfish are ecologically indispensable for healthy coral reefs, and they were encountered and captured more frequently than any other taxon. Fishers made decisions about which fish to target based on a fish's market value, proximity to the fisher, and taxon. The information uncovered on fishers' opportunities, constraints, and decision making has implications for managing this fishery and others. Moreover, it demonstrates the value of pursuing an improved understanding of the fishing process from the perspective of the fishers.


Assuntos
Pesqueiros/economia , Recifes de Corais , Tomada de Decisões , Mergulho , República Dominicana , Pesqueiros/estatística & dados numéricos , Humanos , Masculino
6.
PLoS One ; 11(6): e0156684, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258552

RESUMO

We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds.


Assuntos
Ração Animal , Aquicultura/métodos , Ciclídeos/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Óleos de Peixe/administração & dosagem , Microalgas , Animais , Conservação dos Recursos Naturais , Gorduras Insaturadas na Dieta/administração & dosagem , Modelos Lineares
7.
Environ Toxicol Chem ; 24(10): 2594-602, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16268162

RESUMO

Laboratory research has shown that female fish can pass toxic organochlorines (OCs) from their bodies to their eggs, killing their offspring if sufficient quantities are transferred. We conducted a controlled incubation study using gametes from a wild, OC-contaminated walleye (Sander vitreus) population (Bay of Quinte, Lake Ontario, Canada) in order to assess among-female variation in offspring early life survival in relation to ova concentrations of planar OCs (polychlorinated dibenzo-p-dioxins and furans and planar polychlorinated biphenyls) and a suite of other maternal and ova characteristics. Equal volumes of ova from each female were fertilized, pooled, and incubated together as an experimental cohort. Relative survival of each female's offspring was estimated as the proportion of surviving larvae (at approximately 5 d posthatch) that she contributed to the cohort as determined by microsatellite DNA parentage assignment. Total planar OC concentration (expressed as toxic equivalency of 2,3,7,8-tetrachlorodibenzo-p-dioxin) of ova was positively related to maternal age and size and to ova lipid content. However, early life survival did not decline with increasing ova planar OC concentrations. Similarly, we observed no significant relationships between early life survival and ova thiamine content, ova fatty acid composition, or maternal age or size. Early life survival was more strongly correlated with date of spawn collection, thyroid hormone status of the ova, and ovum size. Maternally transferred planar OCs do not appear to negatively influence female reproductive success in this walleye population.


Assuntos
Poluentes Ambientais/toxicidade , Óvulo/química , Perciformes/fisiologia , Bifenilos Policlorados/farmacocinética , Dibenzodioxinas Policloradas/análogos & derivados , Animais , Poluentes Ambientais/farmacocinética , Feminino , Larva/crescimento & desenvolvimento , Exposição Materna , Óvulo/crescimento & desenvolvimento , Dibenzodioxinas Policloradas/farmacocinética , Sobrevida
9.
Environ Biosafety Res ; 9(1): 41-57, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21122485

RESUMO

Transgenic fish in development for aquaculture could escape from farms and interbreed with wild relatives in the nearby environment. Predicting whether escapes would result in transgene introgression is a major challenge in assessing environmental risks of transgenic fish. Previous studies have simulated gene flow from transgenic fish using mathematical modeling of fitness traits to predict the relative selective value of transgenic genotypes. Here, we present the first study of gene flow over the full life cycle in openly-breeding populations of transgenic animals, along with measurement of fitness traits. We conducted two invasion experiments in which we released two lines of growth-enhanced transgenic fish (T67 and T400), Japanese medaka (Oryzias latipes), into populations of wild-type (W) medaka in structured mesocosms. After several generations, the frequency of transgenic fish varied across replicates in the first invasion experiment (6 months), but the frequency of transgenic fish decreased in the second experiment (19 months). We also measured selected fitness traits in transgenic and wild-type medaka because these traits could be used to predict the relative selective value of a genotype. We found that: T400 males were more fertile than W males; offspring of W females lived longer than those with transgenic mothers; and W and T67 females reached sexual maturity sooner than T400 females. In contrast with other research that reported larger transgenic males had a mating advantage, we found that W males obtained more matings with females than T males; genetic background effects may account for our differing results as we compared W and T fish derived from different strains. The decreasing frequency of transgenic fish in the second invasion experiment suggests that transgenic fish had a selective disadvantage in the experimental environment. Our finding of transgenic advantage of some fitness traits and wild-type advantage in others is consistent with our invasion experiment results.


Assuntos
Animais Geneticamente Modificados , Fluxo Gênico , Aptidão Genética , Estágios do Ciclo de Vida/genética , Oryzias/genética , Animais , Peso Corporal , Feminino , Fertilidade , Longevidade , Masculino , Oryzias/fisiologia , Comportamento Sexual Animal , Maturidade Sexual
10.
Environ Sci Technol ; 43(6): 1696-703, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368159

RESUMO

The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Efeito Estufa , Agricultura , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Indústrias , Minnesota , Política Pública , Fatores de Tempo , Meios de Transporte
11.
Mol Ecol ; 14(7): 1955-64, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15910318

RESUMO

The genetic relationships among 337 northern pike (Esox lucius) collected from the coastal zone of the central Baltic region and the Finnish islands of Aland were analysed using five microsatellite loci. Spatial structure was delineated using both traditional F-statistics and individually based approaches including spatial autocorrelation analysis. Our results indicate that the observed genotypic distribution is incompatible with that of a single, panmictic population. Isolation by distance appears important for shaping the genetic structure of pike in this region resulting in a largely continuous genetic change over the study area. Spatial autocorrelation analysis (Moran's I) of individual pairwise genotypic data show significant positive genetic correlation among pike collected within geographical distances of less than c. 100-150 km (genetic patch size). We suggest that the genetic patch size may be used as a preliminary basis for identifying management units for pike in the Baltic Sea.


Assuntos
Demografia , Peixes/genética , Genética Populacional , Animais , Conservação dos Recursos Naturais , Finlândia , Frequência do Gene , Genótipo , Geografia , Funções Verossimilhança , Repetições de Microssatélites/genética , Oceanos e Mares , Suécia
12.
Mol Ecol ; 12(1): 35-49, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12492876

RESUMO

Estimates of effective population size (Ne) are required to predict the impacts of genetic drift and inbreeding on the evolutionary dynamics of populations. How the ratio of Ne to the number of sexually mature adults (N) varies in natural vertebrate populations has not been addressed. We examined the sensitivity of Ne/N to fluctuations of N and determined the major variables responsible for changing the ratio over a period of 17 years in a population of steelhead trout (Oncorhynchus mykiss) from Washington State. Demographic and genetic methods were used to estimate Ne. Genetic estimates of Ne were gained via temporal and linkage disequilibrium methods using data from eight microsatellite loci. DNA for genetic analysis was amplified from archived smolt scales. The Ne/N from 1977 to 1994, estimated using the temporal method, was 0.73 and the comprehensive demographic estimate of Ne/N over the same time period was 0.53. Demographic estimates of Ne indicated that variance in reproductive success had the most substantial impact on reducing Ne in this population, followed by fluctuations in population size. We found increased Ne/N ratios at low N, which we identified as genetic compensation. Combining the information from the demographic and genetic methods of estimating Ne allowed us to determine that a reduction in variance in reproductive success must be responsible for this compensation effect. Understanding genetic compensation in natural populations will be valuable for predicting the effects of changes in N (i.e. periods of high population density and bottlenecks) on the fitness and genetic variation of natural populations.


Assuntos
Genética Populacional , Oncorhynchus mykiss/genética , Animais , Frequência do Gene , Variação Genética , Genótipo , Reprodução , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA