Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 118(1): 36, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656254

RESUMO

Cardiotoxicity is a major complication of anthracycline therapy that negatively impacts prognosis. Effective pharmacotherapies for prevention of anthracycline-induced cardiomyopathy (AICM) are currently lacking. Increased plasma levels of the neutrophil-derived enzyme myeloperoxidase (MPO) predict occurrence of AICM in humans. We hypothesized that MPO release causally contributes to AICM. Mice intravenously injected with the anthracycline doxorubicin (DOX) exhibited higher neutrophil counts and MPO levels in the circulation and cardiac tissue compared to saline (NaCl)-treated controls. Neutrophil-like HL-60 cells exhibited increased MPO release upon exposition to DOX. DOX induced extensive nitrosative stress in cardiac tissue alongside with increased carbonylation of sarcomeric proteins in wildtype but not in Mpo-/- mice. Accordingly, co-treatment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with DOX and MPO aggravated loss of hiPSC-CM-contractility compared to DOX treatment alone. DOX-treated animals exhibited pronounced cardiac apoptosis and inflammation, which was attenuated in MPO-deficient animals. Finally, genetic MPO deficiency and pharmacological MPO inhibition protected mice from the development of AICM. The anticancer efficacy of DOX was unaffected by MPO deficiency. Herein we identify MPO as a critical mediator of AICM. We demonstrate that DOX induces cardiac neutrophil infiltration and release of MPO, which directly impairs cardiac contractility through promoting oxidation of sarcomeric proteins, cardiac inflammation and cardiomyocyte apoptosis. MPO thus emerges as a promising pharmacological target for prevention of AICM.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Peroxidase , Animais , Humanos , Camundongos , Antraciclinas/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Doxorrubicina/toxicidade , Inflamação , Peroxidase/genética
2.
Mol Syst Biol ; 17(6): e9760, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166567

RESUMO

Spatial organization and gene expression of mammalian chromosomes are maintained and regulated in conjunction with cell cycle progression. This is perturbed once cells enter senescence and the highly abundant HMGB1 protein is depleted from nuclei to act as an extracellular proinflammatory stimulus. Despite its physiological importance, we know little about the positioning of HMGB1 on chromatin and its nuclear roles. To address this, we mapped HMGB1 binding genome-wide in two primary cell lines. We integrated ChIP-seq and Hi-C with graph theory to uncover clustering of HMGB1-marked topological domains that harbor genes involved in paracrine senescence. Using simplified Cross-Linking and Immuno-Precipitation and functional tests, we show that HMGB1 is also a bona fide RNA-binding protein (RBP) binding hundreds of mRNAs. It presents an interactome rich in RBPs implicated in senescence regulation. The mRNAs of many of these RBPs are directly bound by HMGB1 and regulate availability of SASP-relevant transcripts. Our findings reveal a broader than hitherto assumed role for HMGB1 in coordinating chromatin folding and RNA homeostasis as part of a regulatory loop controlling cell-autonomous and paracrine senescence.


Assuntos
Proteína HMGB1 , RNA , Animais , Senescência Celular/genética , Cromatina/genética , Proteína HMGB1/genética , Homeostase/genética
3.
Nucleic Acids Res ; 45(10): 6074-6086, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334977

RESUMO

RNA-binding proteins (RBPs) are central for gene expression by controlling the RNA fate from birth to decay. Various disorders arising from perturbations of RNA-protein interactions document their critical function. However, deciphering their function is complex, limiting the general functional elucidation of this growing class of proteins and their contribution to (patho)physiology. Here, we present sCLIP, a simplified and robust platform for genome-wide interrogation of RNA-protein interactomes based on crosslinking-immunoprecipitation and high-throughput sequencing. sCLIP exploits linear amplification of the immunoprecipitated RNA improving the complexity of the sequencing-library despite significantly reducing the amount of input material and omitting several purification steps. Additionally, it permits a radiolabel-free visualization of immunoprecipitated RNA. In a proof of concept, we identify that CSTF2tau binds many previously not recognized RNAs including histone, snoRNA and snRNAs. CSTF2tau-binding is associated with internal oligoadenylation resulting in shortened snRNA isoforms subjected to rapid degradation. We provide evidence for a new mechanism whereby CSTF2tau controls the abundance of snRNAs resulting in alternative splicing of several RNAs including ANK2 with critical roles in tumorigenesis and cardiac function. Combined with a bioinformatic pipeline sCLIP thus uncovers new functions for established RBPs and fosters the illumination of RBP-protein interaction landscapes in health and disease.


Assuntos
Processamento Alternativo , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação/métodos , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Fator Estimulador de Clivagem , DNA Complementar/genética , Biblioteca Gênica , Histonas/genética , Humanos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/patologia , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/isolamento & purificação , RNA Nuclear Pequeno/efeitos da radiação , RNA não Traduzido/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/efeitos da radiação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Raios Ultravioleta
4.
Pflugers Arch ; 468(6): 993-1012, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27220521

RESUMO

The human transcriptome is highly dynamic, with each cell type, tissue, and organ system expressing an ensemble of transcript isoforms that give rise to considerable diversity. Apart from alternative splicing affecting the "body" of the transcripts, extensive transcriptome diversification occurs at the 3' end. Transcripts differing at the 3' end can have profound physiological effects by encoding proteins with distinct functions or regulatory properties or by affecting the mRNA fate via the inclusion or exclusion of regulatory elements (such as miRNA or protein binding sites). Importantly, the dynamic regulation at the 3' end is associated with various (patho)physiological processes, including the immune regulation but also tumorigenesis. Here, we recapitulate the mechanisms of constitutive mRNA 3' end processing and review the current understanding of the dynamically regulated diversity at the transcriptome 3' end. We illustrate the medical importance by presenting examples that are associated with perturbations of this process and indicate resulting implications for molecular diagnostics as well as potentially arising novel therapeutic strategies.


Assuntos
Regiões 3' não Traduzidas , Regulação Neoplásica da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Transcriptoma , Animais , Humanos , RNA Mensageiro/genética
5.
iScience ; 27(2): 108898, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322992

RESUMO

Myeloperoxidase (MPO) is an enzyme that functions in host defense. MPO is released into the vascular lumen by neutrophils during inflammation and may adhere and subsequently penetrate endothelial cells (ECs) coating vascular walls. We show that MPO enters the nucleus of ECs and binds chromatin independently of its enzymatic activity. MPO drives chromatin decondensation at its binding sites and enhances condensation at neighboring regions. It binds loci relevant for endothelial-to-mesenchymal transition (EndMT) and affects the migratory potential of ECs. Finally, MPO interacts with the RNA-binding factor ILF3 thereby affecting its relative abundance between cytoplasm and nucleus. This interaction leads to change in stability of ILF3-bound transcripts. MPO-knockout mice exhibit reduced number of ECs at scar sites following myocardial infarction, indicating reduced neovascularization. In summary, we describe a non-enzymatic role for MPO in coordinating EndMT and controlling the fate of endothelial cells through direct chromatin binding and association with co-factors.

6.
Antioxidants (Basel) ; 10(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916434

RESUMO

Myeloperoxidase is a signature enzyme of polymorphonuclear neutrophils in mice and humans. Being a component of circulating white blood cells, myeloperoxidase plays multiple roles in various organs and tissues and facilitates their crosstalk. Here, we describe the current knowledge on the tissue- and lineage-specific expression of myeloperoxidase, its well-studied enzymatic activity and incoherently understood non-enzymatic role in various cell types and tissues. Further, we elaborate on Myeloperoxidase (MPO) in the complex context of cardiovascular disease, innate and autoimmune response, development and progression of cancer and neurodegenerative diseases.

7.
Nat Commun ; 12(1): 3014, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021162

RESUMO

Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.


Assuntos
Autofagia/fisiologia , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Autofagia/genética , Cromatina , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Epigenômica , Edição de Genes , Expressão Gênica , Síndrome de Hallermann/genética , Humanos , Mutação , Fenótipo
8.
Cell Stem Cell ; 24(2): 318-327.e8, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554961

RESUMO

Human protein-coding genes are often accompanied by divergently transcribed non-coding RNAs whose functions, especially in cell fate decisions, are poorly understood. Using an hESC-based cardiac differentiation model, we define a class of divergent lncRNAs, termed yin yang lncRNAs (yylncRNAs), that mirror the cell-type-specific expression pattern of their protein-coding counterparts. yylncRNAs are preferentially encoded from the genomic loci of key developmental cell fate regulators. Most yylncRNAs are spliced polyadenylated transcripts showing comparable expression patterns in vivo in mouse and in human embryos. Signifying their developmental function, the key mesoderm specifier BRACHYURY (T) is accompanied by yylncT, which localizes to the active T locus during mesoderm commitment. yylncT binds the de novo DNA methyltransferase DNMT3B, and its transcript is required for activation of the T locus, with yylncT depletion specifically abolishing mesodermal commitment. Collectively, we report a lncRNA-mediated regulatory layer safeguarding embryonic cell fate transitions.


Assuntos
Linhagem da Célula/genética , Proteínas Fetais/metabolismo , Mesoderma/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/genética , Proteínas com Domínio T/metabolismo , Transcrição Gênica , Animais , Diferenciação Celular , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Loci Gênicos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA