Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(7): 070602, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244434

RESUMO

Polarizability is a key response property of physical and chemical systems, which has an impact on intermolecular interactions, spectroscopic observables, and vacuum polarization. The calculation of polarizability for quantum systems involves an infinite sum over all excited (bound and continuum) states, concealing the physical interpretation of polarization mechanisms and complicating the derivation of efficient response models. Approximate expressions for the dipole polarizability, α, rely on different scaling laws α∝R^{3}, R^{4}, or R^{7}, for various definitions of the system radius R. Here, we consider a range of single-particle quantum systems of varying spatial dimensionality and having qualitatively different spectra, demonstrating that their polarizability follows a universal four-dimensional scaling law α=C(4µq^{2}/ℏ^{2})L^{4}, where µ and q are the (effective) particle mass and charge, C is a dimensionless excitation-energy ratio, and the characteristic length L is defined via the L^{2} norm of the position operator. This unified formula is also applicable to many-particle systems, as shown by accurately predicting the dipole polarizability of 36 atoms, 1641 small organic molecules, and Bloch electrons in periodic systems.

2.
Phys Rev Lett ; 114(1): 013201, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25615467

RESUMO

We present a formula for the body-assisted van der Waals interaction potential between two atoms, one or both being prepared in an excited energy eigenstate. The presence of an arbitrary arrangement for a material environment is taken into account via the Green function. The resulting formula supports one of two conflicting findings recorded. The consistency of our formula is investigated by applying it for the case of two atoms in free space and comparing the resulting expression with the one found from the limiting Casimir-Polder potential between an excited atom and a small dielectric sphere.

3.
J Chem Theory Comput ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015013

RESUMO

Scaling laws enable the determination of physicochemical properties of molecules and materials as a function of their size, density, number of electrons or other easily accessible descriptors. Such relations can be counterintuitive and nonlinear, and ultimately yield much needed insight into quantum mechanics of many-particle systems. In this work, we show on the basis of single-particle models, multielectron atoms and molecules that the dipole polarizability of quantum systems is generally proportional to the fourth power of a characteristic length, computed from the ground-state wave function. This four-dimensional (4D) scaling is independent of the ratio of bound-to-bound and bound-to-continuum electronic transitions and applies to many-electron atoms when a correlated length metric is used. Finally, this scaling law is applied to predict the polarizability of molecules by electrostatically coupled atoms-in-molecules approach, obtaining approximately 8% absolute and relative accuracy with respect to hybrid density functional theory (DFT) on the QM7-X data set of organic molecules, providing an efficient and scalable model for the anisotropic polarizability tensors of extended (bio)molecules.

4.
J Phys Chem Lett ; 13(9): 2197-2204, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35231170

RESUMO

By means of quantum mechanics and quantum electrodynamics applied to coupled harmonic Drude oscillators, we study the interaction between two neutral atoms or molecules subject to a uniform static electric field. Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions, as considered within the employed Drude model for both non-retarded and retarded regimes. For the first case, we present an exact solution for two coupled oscillators obtained by diagonalizing the corresponding quantum-mechanical Hamiltonian and demonstrate that the external field can control the strength of different intermolecular interactions and relative orientations of the molecules. In the retarded regime described by quantum electrodynamics, our analysis shows that field-induced electrostatic and polarization energies remain unchanged (in isotropic and homogeneous vacuum) compared to the non-retarded case. For interacting species modeled by quantum Drude oscillators, the developed framework based on quantum mechanics and quantum electrodynamics yields the leading contributions to molecular interactions under the combined action of external and vacuum fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA