Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lasers Med Sci ; 38(1): 122, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162647

RESUMO

Photothermal therapy based on plasmonic gold nanoparticles is considered a promising approach for cancer treatment. Here, we investigate the in vitro photothermal effect of 30-nm gold nanoparticles, optically excited with a 532-nm continuous laser, on the U87MG malignant glioblastoma cells, and demonstrate the role of nanoparticle concentration and exposure power density in achieving its optimum performance. Laser-induced collective oscillation of electrons in plasmonic gold nanoparticles is employed to generate localized heat to denature tumor cells. Optical spectroscopy is used to measure the plasmonic band of nanoparticles and select the excitation laser light. The MTT assay for the IC50 viability assessment is performed to evaluate the live and metabolically active cells after treatment with plasmonic nanoparticles. The quantitative data is statistically analyzed using analysis of variance followed by Tukey's post hoc test. The viability test demonstrates that the metabolic activity of treated U87MG was decreased compared with untreated cells, leading to the determination of the IC50 as 92 [Formula: see text]. A 532-nm laser light was selected for the excitation of gold nanoparticles since the maximum plasmonic band is at 524 nm. The viability tests show that although cells have natural photothermal agents, their absorption efficiency is very low; therefore, the laser-induced plasmonic effect is necessary to observe photothermal effects. The optimal condition was achieved when the nanoparticle concentration was 92 [Formula: see text], and the exposure power density was 96 [Formula: see text]. Thus, it is demonstrated that plasmonic nanoparticle concentration and laser exposure power density are among the key parameters in the photothermal treatment of cancer cells, and higher concentrations of Au-NPs and laser power density lead to less cell viability in the selected range due to the excitation of gold nanoparticles' localized surface plasmon resonance.


Assuntos
Glioblastoma , Hipertermia Induzida , Nanopartículas Metálicas , Nanopartículas , Humanos , Glioblastoma/terapia , Nanopartículas Metálicas/química , Ouro/química , Hipertermia Induzida/métodos , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638673

RESUMO

Steroid-associated osteonecrosis (SAON) is a chronic disease that leads to the destruction and collapse of bone near the joint that is subjected to weight bearing, ultimately resulting in a loss of hip and knee function. Zn2+ ions, as an essential trace element, have functional roles in improving the immunophysiological cellular environment, accelerating bone regeneration, and inhibiting biofilm formation. In this study, we reconstruct SAON lesions with a three-dimensional (3D)-a printed composite made of poly (epsilon-caprolactone) (PCL) and nanoparticulate Willemite (npW). Rabbit bone marrow stem cells were used to evaluate the cytocompatibility and osteogenic differentiation capability of the PCL/npW composite scaffolds. The 2-month bone regeneration was assessed by a Micro-computed tomography (micro-CT) scan and the expression of bone regeneration proteins by Western blot. Compared with the neat PCL group, PCL/npW scaffolds exhibited significantly increased cytocompatibility and osteogenic activity. This finding reveals a new concept for the design of a 3D-printed PCL/npW composite-based bone substitute for the early treatment of osteonecrosis defects.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Nanopartículas/administração & dosagem , Osteogênese/efeitos dos fármacos , Poliésteres/farmacologia , Alicerces Teciduais/química , Animais , Caproatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Lactonas/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteonecrose/tratamento farmacológico , Impressão Tridimensional , Coelhos , Silicatos/farmacologia , Engenharia Tecidual/métodos , Microtomografia por Raio-X/métodos , Compostos de Zinco/farmacologia
3.
J Reprod Immunol ; 158: 103952, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201456

RESUMO

Menstruation is a monthly shedding of the uterine wall, presented by menstrual bleeding in women of reproductive age. Menstruation is regulated by fluctuation of estrogen and progesterone, as well as other endocrine and immune pathways. Many women experienced menstrual disturbances after vaccination against the novel coronavirus in the last two years. Vaccine-induced menstrual disturbances have led to discomfort and concern among reproductive-age women, such that some decided not to receive the subsequent doses of the vaccine. Although many vaccinated women report these menstrual disturbances, the mechanism is still poorly understood. This review article discusses the endocrine and immune changes following COVID-19 vaccination and the possible mechanisms of vaccine-related menstrual disturbances.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Feminino , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Distúrbios Menstruais/induzido quimicamente , Menstruação , Vacinação/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA