Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 229, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131128

RESUMO

BACKGROUND: Mitochondrial genome sequences have become critical to the study of biodiversity. Genome skimming and other short-read based methods are the most common approaches, but they are not well-suited to scale up to multiplexing hundreds of samples. Here, we report on a new approach to sequence hundreds to thousands of complete mitochondrial genomes in parallel using long-amplicon sequencing. We amplified the mitochondrial genome of 677 specimens in two partially overlapping amplicons and implemented an asymmetric PCR-based indexing approach to multiplex 1,159 long amplicons together on a single PacBio SMRT Sequel II cell. We also tested this method on Oxford Nanopore Technologies (ONT) MinION R9.4 to assess if this method could be applied to other long-read technologies. We implemented several optimizations that make this method significantly more efficient than alternative mitochondrial genome sequencing methods. RESULTS: With the PacBio sequencing data we recovered at least one of the two fragments for 96% of samples (~ 80-90%) with mean coverage ~ 1,500x. The ONT data recovered less than 50% of input fragments likely due to low throughput and the design of the Barcoded Universal Primers which were optimized for PacBio sequencing. We compared a single mitochondrial gene alignment to half and full mitochondrial genomes and found, as expected, increased tree support with longer alignments, though whole mitochondrial genomes were not significantly better than half mitochondrial genomes. CONCLUSIONS: This method can effectively capture thousands of long amplicons in a single run and be used to build more robust phylogenies quickly and effectively. We provide several recommendations for future users depending on the evolutionary scale of their system. A natural extension of this method is to collect multi-locus datasets consisting of mitochondrial genomes and several long nuclear loci at once.


Assuntos
Genoma Mitocondrial , Sequenciamento por Nanoporos , Nanoporos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biodiversidade
2.
Mol Phylogenet Evol ; 186: 107853, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37327831

RESUMO

Bent-toed Geckos, genus Cyrtodactylus, are one of the most diverse terrestrial vertebrate groups, and their range extends from South Asia into Australo-Papua and adjacent Pacific islands. Given the generally high faunal endemism on Wallacean islands, it is rather paradoxical that the diversity in these geckos appears to be so low (21 species in Wallacea, 15 in the Philippines) compared with continental shelf assemblages (>300 species on Sunda + Sahul Shelves + adjacent islands). To determine whether this shortfall was real or an artifact of historical undersampling, we analyzed mitochondrial DNA sequences of hundreds of southern Wallacean samples (Lesser Sundas + southern Maluku). After screening to guide sample selection for target capture data collection, we obtained a 1150-locus genomic dataset (1,476,505 bp) for 119 samples of southern Wallacean and closely related lineages. The results suggest that species diversity of Cyrtodactylus in southern Wallacea is vastly underestimated, with phylogenomic and clustering analyses suggesting as many as 25 candidate species, in contrast to the 8 currently described. Gene exchange between adjacent candidate species is absent or minimal across the archipelago with only one case of > 0.5 migrants per generation. Biogeographical analysis suggests that the hitherto unrecognized diversity is the result of at least three independent dispersals from Sulawesi or its offshore islands into southern Wallacea between 6 and 14 Ma, with one invasion producing small-bodied geckos and the other two or three producing larger-bodied geckos. The smaller-bodied laevigatus group appears to be able to coexist with members of either larger-bodied clade, but we have yet to find members of the two larger-bodied clades occurring in sympatry, suggesting that ecological partitioning or competitive exclusion may be shaping individual island assemblages.


Assuntos
Besouros , Lagartos , Animais , Filogenia , Indonésia , Filipinas , Lagartos/genética
3.
Syst Biol ; 71(1): 221-241, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34117769

RESUMO

The Lesser Sunda Archipelago offers exceptional potential as a model system for studying the dynamics of dispersal-driven diversification. The geographic proximity of the islands suggests the possibility for successful dispersal, but this is countered by the permanence of the marine barriers and extreme intervening currents that are expected to hinder gene flow. Phylogenetic and species delimitation analyses of flying lizards (genus Draco) using single mitochondrial genes, complete mitochondrial genomes, and exome-capture data sets identified 9-11 deeply divergent lineages including single-island endemics, lineages that span multiple islands, and parapatrically distributed nonsister lineages on the larger islands. Population clustering and PCA confirmed these genetic boundaries with isolation-by-distance playing a role in some islands or island sets. While gdi estimates place most candidate species comparisons in the ambiguous zone, migration estimates suggest 9 or 10 species exist with nuclear introgression detected across some intra-island contact zones. Initial entry of Draco into the archipelago occurred at 5.5-7.5 Ma, with most inter-island colonization events having occurred between 1-3 Ma. Biogeographical model testing favors scenarios integrating geographic distance and historical island connectivity, including an initial stepping-stone dispersal process from the Greater Sunda Shelf through the Sunda Arc as far eastward as Lembata Island. However, rather than reaching the adjacent island of Pantar by dispersing over the 15-km wide Alor Strait, Draco ultimately reached Pantar (and much of the rest of the archipelago) by way of a circuitous route involving at least five overwater dispersal events. These findings suggest that historical geological and oceanographic conditions heavily influenced dispersal pathways and gene flow, which in turn drove species formation and shaped species boundaries. [Biogeography; genomics, Indonesia; lizards; phylogeography; reptiles].


Assuntos
Fluxo Gênico , Lagartos , Animais , Indonésia , Lagartos/genética , Filogenia , Filogeografia
4.
Mol Biol Evol ; 37(3): 904-922, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710677

RESUMO

Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.


Assuntos
Biologia Computacional/métodos , Répteis/genética , Sequenciamento Completo do Genoma/métodos , Animais , Teorema de Bayes , Evolução Molecular , Éxons , Loci Gênicos , Filogenia , Répteis/classificação , Alinhamento de Sequência
5.
Mol Phylogenet Evol ; 147: 106785, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32135306

RESUMO

The gekkonid genus Cyrtodactylus is a highly diverse group of lizards (280 + species), which covers an expansive geographic range. Although this genus has been the focus of many taxonomic and molecular systematic studies, species on the Southeast Asian island of Borneo have remained understudied, leading to an unclear evolutionary history with cascading effects on taxonomy and biogeographic inferences. We assembled the most comprehensive multilocus Bornean dataset (one mitochondrial and three nuclear loci) that included 129 novel sequences and representatives from each known Cyrtodactylus species on the island to validate taxonomic status, assess species diversity, and elucidate biogeographic patterns. Our results uncovered a high proportion of cryptic diversity and revealed numerous taxonomic complications, especially within the C. consobrinus, C. malayanus, and C. pubisulcus groups. Comparisons of pairwise genetic distances and a preliminary species delimitation analysis using the Automatic Barcode Gap Discovery (ABGD) method demonstrated that some wide-ranging species on Borneo likely comprise multiple distinct and deeply divergent lineages, each with more restricted distributional ranges. We also tested the prevailing biogeographic hypothesis of a single invasion from Borneo into the Philippines. Our analyses revealed that Philippine taxa were not monophyletic, but were likely derived from multiple separate invasions into the geopolitical areas comprising the Philippines. Although our investigation of Bornean Cyrtodactylus is the most comprehensive to-date, it highlights the need for expanded taxonomic sampling and suggests that our knowledge of the evolutionary history, systematics, and biogeography of Bornean Cyrtodactylus is far from complete.


Assuntos
Biodiversidade , Loci Gênicos , Lagartos/classificação , Lagartos/genética , Filogenia , Filogeografia , Animais , Teorema de Bayes , Bornéu , Calibragem , Núcleo Celular/genética , Código de Barras de DNA Taxonômico , Ilhas , Modelos Genéticos , Filipinas , Especificidade da Espécie , Fatores de Tempo
6.
Proc Biol Sci ; 286(1904): 20182575, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161911

RESUMO

The importance of long-distance dispersal (LDD) in shaping geographical distributions has been debated since the nineteenth century. In terrestrial vertebrates, LDD events across large water bodies are considered highly improbable, but organismal traits affecting dispersal capacity are generally not taken into account. Here, we focus on a recent lizard radiation and combine a summary-coalescent species tree based on 1225 exons with a probabilistic model that links dispersal capacity to an evolving trait, to investigate whether ecological specialization has influenced the probability of trans-oceanic dispersal. Cryptoblepharus species that occur in coastal habitats have on average dispersed 13 to 14 times more frequently than non-coastal species and coastal specialization has, therefore, led to an extraordinarily widespread distribution that includes multiple continents and distant island archipelagoes. Furthermore, their presence across the Pacific substantially predates the age of human colonization and we can explicitly reject the possibility that these patterns are solely shaped by human-mediated dispersal. Overall, by combining new analytical methods with a comprehensive phylogenomic dataset, we use a quantitative framework to show how coastal specialization can influence dispersal capacity and eventually shape geographical distributions at a macroevolutionary scale.


Assuntos
Distribuição Animal , Lagartos/fisiologia , Animais , Evolução Biológica , Ecossistema , Lagartos/classificação , Lagartos/genética , Oceanos e Mares , Filogenia , Filogeografia , Dinâmica Populacional
7.
Mol Phylogenet Evol ; 102: 220-32, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27246101

RESUMO

Despite an abundance of phylogenetic studies focused on intrageneric relationships of members of the Mabuya group, the intergeneric relationships have remained difficult to resolve. The most-persistent unresolved regions of the phylogeny of the group include: (1) the placement of the Middle-Eastern Trachylepis with respect to the Afro-Malagasy Trachylepis and its taxonomic status; (2) the phylogenetic position of the Cape Verdean Chioninia within the larger Mabuya group; (3) support for the placement of Dasia with respect to the entire group; and (4) the phylogenetic placement of Eutropis novemcarinata with respect to other Eutropis and Dasia. In this study, we include representatives of all these taxa as well as African Eumecia and Neotropical Mabuya. We seek to address these phylogenetic and systematic issues by generating a well-resolved and supported phylogeny for the Mabuya group as a whole that can be used to develop a stable taxonomy and reconstruct the geographic patterns of diversification within the group. To meet these goals, we built a large multi-locus dataset of 11 markers (nine nuclear and two mitochondrial), and performed concatenated and species tree analyses to generate a well-supported phylogeny for the group. Statistical topology tests reject the monophyly of Middle-Eastern Trachylepis with Afro-Malagasy Trachylepis, and to reflect monophyly we place the Middle-Eastern species into a previously described genus, Heremites. Cape-Verdean Chioninia are resolved as the strongly supported sister-group to Afro-Malagasy Trachylepis. Monophyly of the Southeast-Asian genera, Eutropis and Dasia, is not supported, with a clade composed of Dasia+Eutropis novemcarinata more closely related to the rest of the Mabuya group than to the remaining Eutropis. The phylogenetic position of E. novemcarinata renders Eutropis polyphyletic, and we therefore describe and place E. novemcarinata into a new monotypic genus, Toenayar, to preserve monophyly among the genera. In light of these novel findings, we review and discuss the historical biogeography of the entire Mabuya group.


Assuntos
Lagartos/classificação , Animais , Proteína BRCA1/química , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/química , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Lagartos/genética , NADH Desidrogenase/química , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Filogenia , Filogeografia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
8.
Biol Lett ; 12(8)2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27555650

RESUMO

Most mammals and approximately 20% of squamates (lizards and snakes) are viviparous, whereas all crocodilians, birds and turtles are oviparous. Viviparity evolved greater than 100 times in squamates, including multiple times in Mabuyinae (Reptilia: Scincidae), making this group ideal for studying the evolution of nutritional patterns associated with viviparity. Previous studies suggest that extreme matrotrophy, the support of virtually all of embryonic development by maternal nutrients, evolved as many as three times in Mabuyinae: in Neotropical Mabuyinae (63 species), Eumecia (2 species; Africa) and Trachylepis ivensii (Africa). However, no explicit phylogenetic hypotheses exist for understanding the evolution of extreme matrotrophy. Using multilocus DNA data, we inferred a species tree for Mabuyinae that implies that T. ivensii (here assigned to the resurrected genus Lubuya) is sister to Eumecia, suggesting that extreme matrotrophy evolved only once in African mabuyine skinks.


Assuntos
Lagartos , Animais , Filogenia , Serpentes , Tartarugas
9.
BMC Ecol Evol ; 24(1): 25, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378475

RESUMO

BACKGROUND: Human-commensal species often display deep ancestral genetic structure within their native range and founder-effects and/or evidence of multiple introductions and admixture in newly established areas. We investigated the phylogeography of Eutropis multifasciata, an abundant human-commensal scincid lizard that occurs across Southeast Asia, to determine the extent of its native range and to assess the sources and signatures of human introduction outside of the native range. We sequenced over 350 samples of E. multifasciata for the mitochondrial ND2 gene and reanalyzed a previous RADseq population genetic dataset in a phylogenetic framework. RESULTS: Nuclear and mitochondrial trees are concordant and show that E. multifasciata has retained high levels of genetic structure across Southeast Asia despite being frequently moved by humans. Lineage boundaries in the native range roughly correspond to several major biogeographic barriers, including Wallace's Line and the Isthmus of Kra. Islands at the outer fringe of the range show evidence of founder-effects and multiple introductions. CONCLUSIONS: Most of enormous range of E. multifasciata across Southeast Asia is native and it only displays signs of human-introduction or recent expansion along the eastern and northern fringe of its range. There were at least three events of human-introductions to Taiwan and offshore islands, and several oceanic islands in eastern Indonesia show a similar pattern. In Myanmar and Hainan, there is a founder-effect consistent with post-warming expansion after the last glacial maxima or human introduction.


Assuntos
Lagartos , Animais , Humanos , Filogenia , Lagartos/genética , Sudeste Asiático , Filogeografia , Indonésia
10.
PeerJ ; 11: e15766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637176

RESUMO

The Indonesian island of Sulawesi has a unique geology and geography, which have produced an astoundingly diverse and endemic flora and fauna and a fascinating biogeographic history. Much biodiversity research has focused on the regional endemism in the island's Central Core and on its four peninsulas, but the biodiversity of the island's many upland regions is still poorly understood for most taxa, including amphibians and reptiles. Here, we report the first of several planned full-mountain checklists from a series of herpetological surveys of Sulawesi's mountains conducted by our team. In more than 3 weeks of work on Gunung Galang, a 2,254 m peak west of the city of Tolitoli, Sulawesi Tengah Province, on Sulawesi's Northern Peninsula, we recovered nearly fifty species of reptiles and amphibians, more than a dozen of which are either new to science or known but undescribed. The incompleteness of our sampling suggests that many more species remain to be discovered on and around this mountain.


Assuntos
Biodiversidade , Lista de Checagem , Indonésia , Geografia , Geologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA