Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zoolog Sci ; 41(1): 117-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587524

RESUMO

Melanin-concentrating hormone (MCH), melanocyte-stimulating hormone (MSH), and somatolactin (SL) in the hypothalamus-pituitary axis are associated with body color regulation in teleost fish. Although these hormones' production and secretion respond well to light environments, such as background color, little is known about the effects of different water temperatures. We investigated the effects of water temperature, 10°C, 20°C, and 30°C, on body color and the expression of these genes and corresponding receptor genes in goldfish. The body color in white background (WBG) becomes paler at the higher water temperature, although no difference was observed in black background (BBG). Brain mRNA contents of proMCH genes (pmch1 and pmch2) increased at 30°C and 20°C compared to 10°C in WBG, respectively. Apparent effects of background color and temperature on the pituitary mRNA contents of a POMC gene (pomc) were not observed. The pituitary mRNA contents of the SLα gene were almost double those on a WBG at any temperature, while those of the SLß gene (slb) at 30°C tended to be higher than those at 10°C and 20°C on WBG and BBG. The scale mRNA contents of the MCH receptor gene (mchr2) in WBG were higher than those in BBG at 30°C. The highest scale mRNA contents of MSH receptor (mc1r and mc5r) on BBG were observed at 20°C, while the lowest respective mRNA levels were observed at 30°C on WBG. These results highlight the importance of temperature for the endocrinological regulation of body color, and darker background color may stabilize those endocrine functions.


Assuntos
Carpa Dourada , Pró-Opiomelanocortina , Animais , Temperatura , Carpa Dourada/genética , Encéfalo , RNA Mensageiro/genética
2.
Rev Cardiovasc Med ; 23(4): 121, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39076215

RESUMO

Background: Abnormal respiration during radiofrequency catheter ablation (RFCA) with deep sedation in patients with atrial fibrillation (AF) can affect the procedure's success. However, the respiratory pattern during RFCA with deep sedation remains unclear. This study aimed to investigate abnormal respiration during RFCA and its relationship with sleep apnea in patients with AF. Methods: We included patients with AF who underwent RFCA with cardiorespiratory monitoring using a portable polygraph both at night and during RFCA with deep sedation. The patients were divided based on the administered sedative medicines. Results: We included 40 patients with AF. An overnight sleep study revealed that 27 patients had sleep apnea; among them, 9 showed central predominance. During RFCA with deep sedation, 15 patients showed an abnormal respiratory pattern, with 14 patients showing obstructive predominance. Further, 17 and 23 patients were administered with propofol alone and dexmedetomidine plus propofol, respectively. There was no significant between-group difference in the respiratory event index (REI) at night (7.9 vs. 9.3, p = 0.744). However, compared with the group that received dexmedetomidine plus propofol, the propofol-alone group showed a higher REI during RFCA (5.4 vs. 2.6, p = 0.048), more frequent use of the airway (47% vs. 13%, p = 0.030), and a higher dose of administered propofol (3.9 mg/h/kg vs. 1.2 mg/h/kg, p < 0.001). Multivariable analysis revealed that only the propofol amount was associated with REI during RFCA (p = 0.007). Conclusions: Our findings demonstrated that respiratory events during RFCA with deep sedation were mainly obstructive. Propofol should be administered with dexmedetomidine rather than alone to reduce the propofol amount and avoid respiratory instability.

3.
Gen Comp Endocrinol ; 312: 113860, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302844

RESUMO

Alpha-melanocyte-stimulating hormone (α-MSH), a peptide derived from proopiomelanocortin (POMC), and melanin-concentrating hormone (MCH), act as neuromodulators and regulate food intake in vertebrates. In teleosts, these peptides are also involved competitively in body color regulation; α-MSH induces a dark body color, while MCH induces a pale body color. Similarly, members of the growth hormone (GH) family, somatolactin (SL) and prolactin (PRL), which are involved in the regulation of energy metabolism, are also associated with body color regulation in teleosts. Since these hormones are involved in both body color regulation and energy metabolism, it is possible that feeding status can affect body color. Here, we examined the effects of fasting on the response of goldfish body coloration to changes in background color. Goldfish were acclimated for one week in tanks with a white or black background under conditions of periodic feeding or fasting. The results showed that body color and expression levels of pmch1 and pomc were affected by background color, irrespective of feeding status. Expression levels of sla were higher in fish maintained in tanks with a black background than in tanks with a white background, and higher in the fasted fish compared to the fed fish. However, the pattern of slb expression was almost the opposite of that observed in sla expression. The expression levels of gh and prl in the pituitary, and pmch2a and pmch2b in the brain, were not affected by background color. These results suggest that MCH, α-MSH, SLα, and SLß might be involved in body color regulation and that they are affected by background color in goldfish. The results also suggest that feeding status may affect body color regulation via SLα and SLß, although these effects might be limited compared to the effect of background color.


Assuntos
Cor , Carpa Dourada , Fenômenos Fisiológicos da Nutrição , Hormônios Hipofisários , Animais , Carpa Dourada/metabolismo , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Pigmentação/genética , Hipófise/metabolismo , Hormônios Hipofisários/genética , Hormônios Hipofisários/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , alfa-MSH/metabolismo
4.
Gen Comp Endocrinol ; 285: 113266, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493394

RESUMO

In the present study, the effects of photic environments, such as background color (white and black) and chromatic lights (blue, green, and red), on body color and gene expressions of melanin-concentrating hormone (mch) in the brain and proopiomelanocortin (pomc) in the pituitary, as well as the roles of the eyes and brain as mediators of ambient light to these genes, were examined in goldfish (Carassius auratus). Body color of goldfish exposed to fluorescent light (FL) under white background (WBG) was paler than those under black background (BBG). Gene expression levels for mch and pomc were reciprocally different depending on background color; under WBG, mRNA levels of mch and pomc were high and low, respectively, while under BBG, these levels were reversed. mch and pomc mRNA expressions of the fish exposed to chromatic light from LED were primarily similar to those exposed to FL, while blue light stimulated the expressions of mch and pomc. Ophthalmectomized goldfish exposed to FL or blue light showed minimum expression levels of mch gene, suggesting that eyes are the major mediator of ambient light for mch gene expression. Contrastingly, mRNA expressions of pomc in ophthalmectomized goldfish exposed to FL were different from those of intact goldfish. These results suggest that eyes play a functional role in mediating ambient light to regulate pomc gene expression. Since ophthalmectomy caused an increase in pomc mRNA contents in the fish exposed to blue light, we suggest that the brain is an additional mediator to regulate pomc gene expression.


Assuntos
Regulação da Expressão Gênica , Carpa Dourada/genética , Hormônios Hipotalâmicos/genética , Luz , Melaninas/genética , Pigmentação/genética , Pigmentação/efeitos da radiação , Hormônios Hipofisários/genética , Pró-Opiomelanocortina/genética , Animais , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Cor , Regulação da Expressão Gênica/efeitos da radiação , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Hipófise/metabolismo , Hipófise/efeitos da radiação , Hormônios Hipofisários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Gen Comp Endocrinol ; 298: 113581, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800773

RESUMO

We investigated the effects of tank brightness on body color, growth, and endocrine systems of rainbow trout (Oncorhynchus mykiss). Five different tank colors that produce varying levels of brightness were used, including black, dark gray [DG], light gray [LG], white, and blue. The fish were reared in these tanks for 59 days under natural photoperiod and water temperature. The body color was affected by tank brightness, such that body color brightness was correlated with tank brightness (white-housed ≥ LG-housed ≥ DG-housed ≥ blue-housed ≥ black-housed). No difference in somatic growth was observed among the fish reared in the five tanks. The mRNA levels of melanin-concentrating hormone (mch1) was higher in white-housed fish than those in the other tanks, and the mRNA levels of proopiomelanocortins (pomc-a and pomc-b) were higher in fish housed in a black tank than those in other tanks. mRNA level of somatolactin, a member of growth hormone family, was higher in black-housed fish than those in white-housed fish. The mRNA levels of mch1 and mch2 in blue-housed fish were similar to those in black-housed fish, while the mRNA levels of pomc-a and pomc-b in blue-housed fish were similar to those in white-housed fish. The current results suggest that tank color is not related to fish growth, therefore any color of conventional rearing tank can be used to grow fish. Moreover, the association between somatolactin with body color changes is suggested in addition to the role of classical MCH and melanophore stimulating hormone derived from POMC.


Assuntos
Sistema Endócrino/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Pigmentação , Animais , Cor , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Melaninas/genética , Melaninas/metabolismo , Hormônios Estimuladores de Melanócitos/genética , Hormônios Estimuladores de Melanócitos/metabolismo , Oncorhynchus mykiss/genética , Hormônios Hipofisários/genética , Hormônios Hipofisários/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Prolactina/genética , Prolactina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Gen Comp Endocrinol ; 271: 82-90, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30419230

RESUMO

We have previously shown that the somatic growth of barfin flounder, Verasper moseri, was promoted by green light. The present study was undertaken to elucidate whether growth-promoting effect of green light can be observed in other flatfishes and to understand the roles of endocrine systems in green light-induced growth. Herein, we demonstrated facilitation of growth by green light in the spotted halibut, Verasper variegatus, and Japanese flounder, Paralichthys olivaceus. Blue and blue-green light showed potencies that were similar to that of green light, while the potencies of red and white light were equivalent to that of ambient light (control). We also examined the effects of green light on growth and endocrine systems of V. variegatus at various water temperatures. Growth of the fish was facilitated by green light at four different water temperatures examined; the fish were reared for 31 days at 12 and 21 °C, and 30 days at 15 and 18 °C. Increase in condition factor was observed at 15 and 18 °C. Among the genes encoding hypothalamic hormones, expression levels of melanin-concentrating hormone 1 (mch1) were enhanced by green light at the four water temperatures. Expression levels of other genes including mch2 increased at certain water temperatures. No difference was observed in the expression levels of pituitary hormone genes, including those of growth hormone and members of proopiomelanocortin family, and in plasma levels of members of the insulin family. The results suggest that green light may generally stimulate growth of flatfishes. Moreover, it is conceivable that MCH, production of which is stimulated by green light, is a key hormone; it augments food intake, which is intimately coupled with somatic growth.


Assuntos
Sistema Endócrino/metabolismo , Sistema Endócrino/efeitos da radiação , Linguados/crescimento & desenvolvimento , Linguado/crescimento & desenvolvimento , Luz , Temperatura , Água , Animais , Cor , Linguados/sangue , Linguados/genética , Linguado/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Hormônios/sangue , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Hipófise/metabolismo , Hipófise/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Gen Comp Endocrinol ; 269: 141-148, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30195023

RESUMO

Melanosome dispersion is important for protecting the internal organs of fish against ultraviolet light, especially in transparent larvae with underdeveloped skin. Melanosome dispersion leads to dark skin color in dim light. Melanosome aggregation, on the other hand, leads to pale skin color in bright light. Both of these mechanisms are therefore useful for camouflage. In this study, we investigated a hormone thought to be responsible for the light wavelength-dependent response of melanophores in zebrafish larvae. We irradiated larvae using light-emitting diode (LED) lights with peak wavelengths (λmax) of 355, 400, 476, 530, and 590 nm or fluorescent light (FL) 1-4 days post fertilization (dpf). Melanosomes in skin melanophores were more dispersed under short wavelength light (λmax ≤ 400 nm) than under FL. Conversely, melanosomes were more aggregated under mid-long wavelength light (λmax ≥ 476 nm) than under FL. In addition, long-term (1-12 dpf) irradiation of 400 nm light increased melanophores in the skin, whereas that of 530 nm light decreased them. In teleosts, melanin-concentrating hormone (MCH) aggregates melanosomes within chromatophores, whereas melanocyte-stimulating hormone, derived from proopiomelanocortin (POMC), disperses melanosomes. The expression of a gene for MCH was down-regulated by short wavelength light but up-regulated by mid-long wavelength light, whereas a gene for POMC was up-regulated under short wavelength light. Melanosomes in larvae (4 dpf) exposed to a black background aggregated when immersing the larvae in MCH solution. Yohimbine, an α2-adrenergic receptor antagonist, attenuated adrenaline-dependent aggregation in larvae exposed to a black background but did not induce melanosome dispersion in larvae exposed to a white background. These results suggest that MCH plays a key role in the light wavelength-dependent response of melanophores, flexibly mediating the transmission of light wavelength information between photoreceptors and melanophores.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Luz , Melaninas/metabolismo , Hormônios Hipofisários/metabolismo , Pigmentação da Pele/efeitos da radiação , Peixe-Zebra/metabolismo , Animais , Regulação da Expressão Gênica/efeitos da radiação , Larva/efeitos da radiação , Hormônios Estimuladores de Melanócitos/metabolismo , Melanóforos/metabolismo , Melanóforos/efeitos da radiação , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Preparações Farmacêuticas , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Peixe-Zebra/genética
8.
Gen Comp Endocrinol ; 257: 203-210, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28427902

RESUMO

We previously reported that the somatic growth of barfin flounder, Verasper moseri, was effectively stimulated by the green light compared to the blue and red lights. Herein, we report the effects of different green light intensities on the growth and endocrine system of the fish. Fish were reared in a dark room with light from a light-emitting diode (LED) at a peak wavelength of 518nm under controlled photoperiod (10.5:13.5h, light:dark cycle; 06:00-16:30, light) with three levels of photon flux density (PFD)-2 (low), 7 (medium), or 21 (high) µmol·m-2·s-1 at the water surface. The average water temperature was 10.2°C, and the fish were fed until satiety. The fish reared under high PFD of green light showed the highest specific growth rates, followed by the medium PFD group. Under high PFD, the fish showed the highest amount of melanin-concentrating hormone mRNA in their brains and insulin in plasma, while the lowest amount of growth hormone was observed in their pituitary glands. These results suggest that the green light stimulated the growth of barfin flounders in a light intensity-dependent manner in association with their central and peripheral endocrine systems. However, when the fish were reared in an ordinary room where they received both ambient and green LED lights, the fish under LED and ambient light grew faster than those under ambient light only (control). Moreover, no difference was observed in the specific growth rate of the fish reared under the three different green LED light intensities, suggesting that the growth was equally stimulated by the green light within a certain range of intensities under ambient light.


Assuntos
Peixes/crescimento & desenvolvimento , Linguado/crescimento & desenvolvimento , Hormônios Hipotalâmicos/metabolismo , Insulina/metabolismo , Melaninas/metabolismo , Hormônios Hipofisários/metabolismo , Animais , Cor , Luz
9.
Gen Comp Endocrinol ; 262: 90-98, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574149

RESUMO

Body coloration in flatfish is one of the most distinctive asymmetries in the animal kingdom, although the fundamental molecular mechanism of the pigmentation is unclear. In the dorso-ventral coloration (countershading) of other teleost fishes, ventral-specific expression of agouti signaling protein 1 (ASIP1), an endogenous antagonist of melanocortin 1 receptor (MC1R), has been reported to play a pivotal role. Contribution of ASIP1 is also suggested in the asymmetrical pigmentation of flatfish. In order to confirm the contribution of ASIP1 and further examine receptor function in the body coloration of Japanese flounder, expression levels of asip1, mc1r, melanocortin 5 receptor (mc5r), and melanin-concentrating hormone receptor 2 (mchr2) were measured in the normally pigmented area of the left side, the normally non-pigmented area of the right side, and the abnormally pigmented (exhibiting hypermelanosis) area of the right side. Measurement was also carried out under conditions of hypermelanosis stimulated by cortisol and during the transition from non-pigmentation to pigmentation in areas of hypermelanosis. Contrary to our expectations, no difference was detected in asip1 expression between pigmented and non-pigmented areas. There was also no difference between normal and hormonally stimulated pigmented conditions in areas of hypermelanosis or during the transition process. Instead, the expression levels of mc1r, mc5r, and mchr2 were consistently higher in pigmented areas, and were especially increased under hormonally stimulated conditions. In addition, expressions of these receptor genes increased prior to pigmentation in areas of future hypermelanosis. Our results suggest that MC1Rand MC5R, but not necessarily ASIP1, contribute to pigmentation and hypermelanosis in Japanese flounder. We propose a yet unknown molecular mechanism for asymmetrical pigmentation in flatfish that is distinct from that of countershading in other vertebrates.


Assuntos
Proteína Agouti Sinalizadora/genética , Linguado/fisiologia , Regulação da Expressão Gênica , Pigmentação/genética , Receptor Tipo 1 de Melanocortina/genética , Receptores de Melanocortina/genética , Animais , Receptor Tipo 1 de Melanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Transdução de Sinais
10.
Gen Comp Endocrinol ; 264: 138-150, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28647318

RESUMO

To evaluate the association of the melanotropic peptides and their receptors for morphological color change, we investigated the effects of changes in background color, between white and black, on xanthophore density in the scales and expression levels of genes for hormonal peptides and corresponding receptors (MCH-R2, MC1R, and MC5R) in goldfish (Carassius auratus). The xanthophore density in both dorsal and ventral scales increased after transfer from a white to black background. However, xanthophore density in dorsal scales increased after transfer from a black to white background, and that of ventral scales decreased after transfer from a black to black background, which served as the control. In the white-reared fish, melanin-concentrating hormone (mch) mRNA content in the brain was higher than that in black-reared fish, whereas proopiomelanocortin a (pomc-a) mRNA content in the pituitary was lower than that in the black-reared fish. Agouti-signaling protein (asp) mRNA was detected in the ventral skin but not in the dorsal skin. No difference was observed in the asp mRNA content between fish reared in white or black background, suggesting that ASP might not be associated with background color adaptation. In situ hybridization revealed that both mc1r and mc5r were expressed in the xanthophores in scales. The mRNA content of mc1r in scales did not always follow the background color change, whereas those of mc5r decreased in the white background and increased in the black background, suggesting that mc5r might be a major factor reinforcing the function of MSH in morphological color changes. White backgrounds increased mch mRNA content in the brain, but decreased mch-r2 mRNA content in the scales. These altered expression levels of melanotropin receptors might affect reactivity to melanotropins through long-term adaptation to background color.


Assuntos
Regulação da Expressão Gênica , Carpa Dourada/genética , Hormônios Estimuladores de Melanócitos/genética , Pigmentação/genética , Receptores do Hormônio Hipofisário/genética , Escamas de Animais/metabolismo , Animais , Encéfalo/metabolismo , Cor , Carpa Dourada/metabolismo , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Melaninas/genética , Melaninas/metabolismo , Hormônios Estimuladores de Melanócitos/metabolismo , Hormônios Hipofisários/genética , Hormônios Hipofisários/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do Hormônio Hipofisário/metabolismo , Pele/metabolismo
11.
BMC Evol Biol ; 16(1): 106, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27193604

RESUMO

BACKGROUND: The visual system is important for animals for mate choice, food acquisition, and predator avoidance. Animals possessing a visual system can sense particular wavelengths of light emanating from objects and their surroundings and perceive their environments by processing information contained in these visual perceptions of light. Visual perception in individuals varies with the absorption spectra of visual pigments and the expression levels of opsin genes, which may be altered according to the light environments. However, which light environments and the mechanism by which they change opsin expression profiles and whether these changes in opsin gene expression can affect light sensitivities are largely unknown. This study determined whether the light environment during growth induced plastic changes in opsin gene expression and behavioral sensitivity to particular wavelengths of light in guppies (Poecilia reticulata). RESULTS: Individuals grown under orange light exhibited a higher expression of long wavelength-sensitive (LWS) opsin genes and a higher sensitivity to 600-nm light than those grown under green light. In addition, we confirmed that variations in the expression levels of LWS opsin genes were related to the behavioral sensitivities to long wavelengths of light. CONCLUSIONS: The light environment during the growth stage alters the expression levels of LWS opsin genes and behavioral sensitivities to long wavelengths of light in guppies. The plastically enhanced sensitivity to background light due to changes in opsin gene expression can enhance the detection and visibility of predators and foods, thereby affecting survival. Moreover, changes in sensitivities to orange light may lead to changes in the discrimination of orange/red colors of male guppies and might alter female preferences for male color patterns.


Assuntos
Opsinas dos Cones/genética , Proteínas de Peixes/genética , Poecilia/crescimento & desenvolvimento , Poecilia/genética , Animais , Opsinas dos Cones/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Expressão Gênica , Luz , Masculino , Preferência de Acasalamento Animal , Poecilia/anatomia & histologia , Poecilia/fisiologia , Percepção Visual
12.
Gen Comp Endocrinol ; 232: 101-8, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26795919

RESUMO

We investigated the effects of specific wavelengths of light on the growth of barfin flounder. The fish, reared in white tanks in a dark room, were irradiated with light from light-emitting diodes (LEDs) with peak wavelengths of 464nm (blue), 518nm (green), and 635nm (red) under a controlled photoperiod (10.5:13.5, light-dark cycle; 06:00-16:30, light). Fish were reared for four weeks in three independent experiments at three different water temperatures (averages of 14.9°C, 8.6°C, and 6.6°C). The fish irradiated with blue and green light had higher specific growth rates (% body weight⋅day(-1)) than fish irradiated with red light. Notably, green light had the greatest effect on growth among the three light wavelengths at 6.6°C. In the brains of fish reared at 6.6°C, the amounts of melanin-concentrating hormone 1 mRNA under green light were lower than those under red light, and amounts of proopiomelanocortin-C mRNA under blue and green light were higher than those under red light. No differences were observed for other neuropeptides tested. In the pituitary, no difference was observed in growth hormone mRNA content. In plasma, higher levels of insulin and insulin-like growth factor-I were observed in fish under green light than those of fish under red light. These results suggest that the endocrine systems of barfin flounder are modulated by a specific wavelength of light that stimulates somatic growth.


Assuntos
Peixes/crescimento & desenvolvimento , Linguado/crescimento & desenvolvimento , Hormônios Hipotalâmicos/genética , Luz/efeitos adversos , Melaninas/genética , Hormônios Hipofisários/genética , Animais , Peixes/metabolismo , Linguado/metabolismo
13.
Mol Ecol ; 23(7): 1799-812, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24612406

RESUMO

New World monkeys exhibit prominent colour vision variation due to allelic polymorphism of the long-to-middle wavelength (L/M) opsin gene. The known spectral variation of L/M opsins in primates is broadly determined by amino acid composition at three sites: 180, 277 and 285 (the 'three-sites' rule). However, two L/M opsin alleles found in the black-handed spider monkeys (Ateles geoffroyi) are known exceptions, presumably due to novel mutations. The spectral separation of the two L/M photopigments is 1.5 times greater than expected based on the 'three-sites' rule. Yet the consequence of this for the visual ecology of the species is unknown, as is the evolutionary mechanism by which spectral shift was achieved. In this study, we first examine L/M opsins of two other Atelinae species, the long-haired spider monkeys (A. belzebuth) and the common woolly monkeys (Lagothrix lagotricha). By a series of site-directed mutagenesis, we show that a mutation Y213D (tyrosine to aspartic acid at site 213) in the ancestral opsin of the two alleles enabled N294K, which occurred in one allele of the ateline ancestor and increased the spectral separation between the two alleles. Second, by modelling the chromaticity of dietary fruits and background leaves in a natural habitat of spider monkeys, we demonstrate that chromatic discrimination of fruit from leaves is significantly enhanced by these mutations. This evolutionary renovation of L/M opsin polymorphism in atelines illustrates a previously unappreciated dynamism of opsin genes in shaping primate colour vision.


Assuntos
Evolução Biológica , Opsinas dos Cones/genética , Platirrinos/genética , Alelos , Substituição de Aminoácidos , Animais , Visão de Cores , Comportamento Alimentar , Frutas , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Platirrinos/fisiologia , Análise de Sequência de DNA , Análise Espectral
15.
Sleep Breath ; 18(2): 439-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24213810

RESUMO

PURPOSE: Obstructive sleep apnea (OSA) is complicated with heart failure (HF); however, the reason for this is not well understood. Craniofacial anatomic risk factors may contribute to OSA pathogenesis in HF patients. However, there are no data about cephalometric findings among OSA patients with HF. METHODS: Consecutive patients with HF and OSA (defined as total apnea-hypopnea index (AHI) ≥15/h) were enrolled. As controls, OSA patients without HF but matching the test group in age, BMI, and obstructive AHI were also enrolled. RESULTS: Overall, 17 OSA patients with HF and 34 OSA patients without HF were compared. There are no significant differences in the characteristics or polysomnographic parameters between 2 groups. In the cephalometric findings, compared with patients without HF, patients with HF showed a significantly greater angle between the line SN to point "A" (SNA) and a longer inferior airway space and greater airway area. However, the tongue area of patients with HF was more than those without HF. CONCLUSIONS: The craniofacial structures of OSA patients with HF were different from those without HF. OSA patients with HF had an upper airway anatomy that is more likely to collapse when sleeping while recumbent, despite having a larger airway space.


Assuntos
Obstrução das Vias Respiratórias/complicações , Cefalometria , Anormalidades Craniofaciais/complicações , Insuficiência Cardíaca Sistólica/complicações , Insuficiência Cardíaca/etiologia , Apneia Obstrutiva do Sono/etiologia , Adulto , Idoso , Obstrução das Vias Respiratórias/diagnóstico , Índice de Massa Corporal , Anormalidades Craniofaciais/diagnóstico , Insuficiência Cardíaca Sistólica/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Polissonografia , Fatores de Risco
16.
J Clin Med ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892846

RESUMO

Background: Repetitive episodes of apnea and hypopnea during sleep in patients with obstructive sleep apnea (OSA) are known to increase the risk of atherosclerosis. Underlying obesity and related disorders, such as insulin resistance, are indirectly related to the development of atherosclerosis. In addition, OSA is independently associated with insulin resistance; however, data regarding this relationship are scarce in Japanese populations. Methods: This study aimed to examine the relationship between the severity of OSA and insulin resistance in a Japanese population. We analyzed the data of consecutive patients who were referred for polysomnography under clinical suspicion of developing OSA and who did not have diabetes mellitus or any cardiovascular disease. Multiple regression analyses were performed to determine the relationship between the severity of OSA and insulin resistance. Results: The data from a total of 483 consecutive patients were analyzed. The median apnea-hypopnea index (AHI) was 40.9/h (interquartile range: 26.5, 59.1) and the median homeostasis model assessment for insulin resistance (HOMA-IR) was 2.00 (interquartile range: 1.25, 3.50). Multiple regression analyses revealed that the AHI, the lowest oxyhemoglobin saturation (SO2), and the percentage of time spent on SO2 < 90% were independently correlated with HOMA-IR (an adjusted R-squared value of 0.01278821, p = 0.014; an adjusted R-squared value of -0.01481952, p = 0.009; and an adjusted R-squared value of 0.018456581, p = 0.003, respectively). Conclusions: The severity of OSA is associated with insulin resistance assessed by HOMA-IR in a Japanese population.

17.
Heart Vessels ; 28(5): 639-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22975715

RESUMO

Prolonged P-wave duration, indicating atrial conduction delay, is a marker of left atrial abnormality and is reported as a potent precursor of atrial fibrillation (AF). Several studies have shown that obstructive sleep apnea (OSA) is associated with AF. We evaluated the relationship between OSA and prolonged P-wave duration. Consecutive subjects who underwent overnight polysomnography and showed a normal sinus rhythm, had no history of AF or ischemic heart disease, and showed no evidence of heart failure were enrolled. Apnea-hypopnea index (AHI) is defined as the number of apnea and hypopnea events per hour of sleep. P-wave duration was determined on the basis of the mean duration of three consecutive beats in lead II from a digitally stored electrocardiogram. A total of 250 subjects (middle-aged, predominantly male, mildly obese, with a mean P-wave duration of 106 ms) were enrolled. In addition to age, male gender, body mass index (BMI), hypertension, dyslipidemia, and uric acid and creatinine levels, AHI (r = 0.56; P < 0.001) had significant univariable relationship with P-wave duration. Multivariate regression analysis showed that age, BMI, male gender, and AHI (partial correlation coefficient, 0.47; P < 0.001) were significantly independently correlated to P-wave duration. Severity of OSA is significantly associated with delayed atrial conduction time. Obstructive sleep apnea may lead to progression of atrial remodeling as an AF substrate.


Assuntos
Arritmias Cardíacas/complicações , Função do Átrio Esquerdo , Sistema de Condução Cardíaco/fisiopatologia , Apneia Obstrutiva do Sono/etiologia , Potenciais de Ação , Adulto , Idoso , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Índice de Massa Corporal , Estudos Transversais , Eletrocardiografia , Feminino , Humanos , Japão , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Obesidade/complicações , Obesidade/diagnóstico , Polissonografia , Fatores de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/fisiopatologia , Fatores de Tempo
18.
Front Cardiovasc Med ; 10: 1156353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396594

RESUMO

Introduction: Heart failure (HF) is an advanced stage of cardiac disease and is associated with a high rate of mortality. Previous studies have shown that sleep apnea (SA) is associated with a poor prognosis in HF patients. Beneficial effects of PAP therapy that is effective on reducing SA on cardiovascular events, were not yet established. However, a large-scale clinical trial reported that patients with central SA (CSA) which was not effectively suppressed by continuous positive airway pressure (CPAP) revealed poor prognosis. We hypothesize that unsuppressed SA by CPAP is associated with negative consequences in patients with HF and SA, including either obstructive SA (OSA) or CSA. Methods: This was a retrospective observational study. Patients with stable HF, defined as left ventricular ejection fraction of ≤50%; New York Heart Association class ≥ II; and SA [apnea-hypopnea index (AHI) of ≥15/h on overnight polysomnography], treated with CPAP therapy for 1 month and performed sleep study with CPAP were enrolled. The patients were classified into two groups according to AHI on CPAP (suppressed group: residual AHI ≥ 15/h; and unsuppressed group: residual AHI < 15/h). The primary endpoint was a composite of all-cause death and hospitalization for HF. Results: Overall, data of 111 patients including 27 patients with unsuppressed SA, were analyzed. The cumulative event-free survival rates were lower in the unsuppressed group during a period of 36.6 months. A multivariate Cox proportional hazard model showed that the unsuppressed group was associated with an increased risk for clinical outcomes (hazard ratio 2.30, 95% confidence interval 1.21-4.38, p = 0.011). Conclusion: Our study suggested that in patients with HF and SA including either OSA or CSA, presence of unsuppressed SA even on CPAP was associated with worse prognosis as compared to those with suppressed SA by CPAP.

19.
Vasc Health Risk Manag ; 19: 733-740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025517

RESUMO

Aim: Prolonged P-wave duration (PWD), which indicates atrial conduction delay, is a potent precursor of atrial fibrillation (AF) that may be induced by obstructive sleep apnea (OSA). The cardio-ankle vascular index (CAVI), which is an arterial stiffness parameter, is elevated in patients with OSA; moreover, an increased CAVI is associated with atrial conduction delay through left atrium enlargement in association with left ventricular diastolic dysfunction. We aimed to examine the relationship between the CAVI and PWD in patients with OSA. Methods: We included patients with a sinus rhythm who underwent overnight polysomnography. We measured the PWD and CAVI on standard 12-lead electrocardiograms; further, we analyzed the relationship between PWD and CAVI. Results: We analyzed data from 300 participants (men, 89.0%; mean age, 52.3 ± 13.1 years; and body mass index, 26.2 ± 3.9 kg/m2). The mean PWD was 104.4 ± 10.4 ms while the mean CAVI was 7.5 ± 1.5. PWD was significantly correlated with CAVI (r = 0.478, p < 0.001); additionally, PWD and CAVI were directly associated with OSA severity (p = 0.002 and p = 0.002, respectively). Multivariate regression analysis revealed an independent significant correlation of PWD and CAVI with OSA severity. Conclusion: In patients with OSA, an increase in arterial stiffness is associated with atrial conduction delay.


Assuntos
Fibrilação Atrial , Apneia Obstrutiva do Sono , Rigidez Vascular , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Átrios do Coração , Índice de Massa Corporal , Apneia Obstrutiva do Sono/diagnóstico
20.
Front Endocrinol (Lausanne) ; 13: 994060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619537

RESUMO

Introduction: Koi carp, an ornamental fish derived from the common carp Cyprinus carpio (CC), is characterized by beautiful skin color patterns. However, the mechanism that gives rise to the characteristic vivid skin coloration of koi carp has not been clarified. The skin coloration of many teleosts changes in response to differences in the background color. This change in skin coloration is caused by diffusion or aggregation of pigment granules in chromatophores and is regulated mainly by sympathetic nerves and hormones. We hypothesized that there would be some abnormality in the mechanism of skin color regulation in koi carp, which impairs skin color fading in response to background color. Methods: We compared the function of melanin-concentrating hormone (MCH), noradrenaline, and adrenaline in CC and Taisho-Sanshoku (TS), a variety of tri-colored koi. Results and Discussion: In CC acclimated to a white background, the skin color became paler and pigment granules aggregated in melanophores in the scales compared to that in black-acclimated CC. There were no clear differences in skin color or pigment granule aggregation in white- or black-acclimated TS. The expression of mch1 mRNA in the brain was higher in the white-acclimated CC than that in the black-acclimated CC. However, the expression of mch1 mRNA in the brain in the TS did not change in response to the background color. Additionally, plasma MCH levels did not differ between white- and black-acclimated fish in either CC or TS. In vitro experiments showed that noradrenaline induced pigment aggregation in scale melanophores in both CC and TS, whereas adrenaline induced pigment aggregation in the CC but not in the TS. In vitro administration of MCH induced pigment granule aggregation in the CC but not in the TS. However, intraperitoneal injection of MCH resulted in pigment granule aggregation in both CC and TS. Collectively, these results suggest that the weak sensitivity of scale melanophores to MCH and adrenaline might be responsible for the lack of skin color change in response to background color in the TS.


Assuntos
Carpas , Epinefrina , Animais , Epinefrina/farmacologia , Melanóforos/metabolismo , Norepinefrina/farmacologia , Norepinefrina/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA