Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(24): 6536-6550, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34523777

RESUMO

Most national GHG inventories estimating direct N2 O emissions from managed soils rely on a default Tier 1 emission factor (EF1 ) amounting to 1% of nitrogen inputs. Recent research has, however, demonstrated the potential for refining the EF1 considering variables that are readily available at national scales. Building on existing reviews, we produced a large dataset (n = 848) enriched in dry and low latitude tropical climate observations as compared to former global efforts and disaggregated the EF1 according to most meaningful controlling factors. Using spatially explicit N fertilizer and manure inputs, we also investigated the implications of using the EF1 developed as part of this research and adopted by the 2019 IPCC refinement report. Our results demonstrated that climate is a major driver of emission, with an EF1 three times higher in wet climates (0.014, 95% CI 0.011-0.017) than in dry climates (0.005, 95% CI 0.000-0.011). Likewise, the form of the fertilizer markedly modulated the EF1 in wet climates, where the EF1 for synthetic and mixed forms (0.016, 95% CI 0.013-0.019) was also almost three times larger than the EF1 for organic forms (0.006; 95% CI 0.001-0.011). Other factors such as land cover and soil texture, C content, and pH were also important regulators of the EF1 . The uncertainty associated with the disaggregated EF1 was considerably reduced as compared to the range in the 2006 IPCC guidelines. Compared to estimates from the 2006 IPCC EF1 , emissions based on the 2019 IPCC EF1 range from 15% to 46% lower in countries dominated by dry climates to 7%-37% higher in countries with wet climates and high synthetic N fertilizer consumption. The adoption of the 2019 IPCC EF1 will allow parties to improve the accuracy of emissions' inventories and to better target areas for implementing mitigation strategies.


Assuntos
Gases de Efeito Estufa , Agricultura , Fertilizantes/análise , Gases de Efeito Estufa/análise , Nitrogênio/análise , Óxido Nitroso/análise , Solo , Clima Tropical , Incerteza
2.
Glob Chang Biol ; 25(11): 3706-3719, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31233668

RESUMO

China has experienced rapid agricultural development over recent decades, accompanied by increased fertilizer consumption in croplands; yet, the trend and drivers of the associated nitrous oxide (N2 O) emissions remain uncertain. The primary sources of this uncertainty are the coarse spatial variation of activity data and the incomplete model representation of N2 O emissions in response to agricultural management. Here, we provide new data-driven estimates of cropland-N2 O emissions across China in 1990-2014, compiled using a global cropland-N2 O flux observation dataset, nationwide survey-based reconstruction of N-fertilization and irrigation, and an updated nonlinear model. In addition, we have evaluated the drivers behind changing cropland-N2 O patterns using an index decomposition analysis approach. We find that China's annual cropland-N2 O emissions increased on average by 11.2 Gg N/year2 (p < .001) from 1990 to 2003, after which emissions plateaued until 2014 (2.8 Gg N/year2 , p = .02), consistent with the output from an ensemble of process-based terrestrial biosphere models. The slowdown of the increase in cropland-N2 O emissions after 2003 was pervasive across two thirds of China's sowing areas. This change was mainly driven by the nationwide reduction in N-fertilizer applied per area, partially due to the prevalence of nationwide technological adoptions. This reduction has almost offset the N2 O emissions induced by policy-driven expansion of sowing areas, particularly in the Northeast Plain and the lower Yangtze River Basin. Our results underline the importance of high-resolution activity data and adoption of nonlinear model of N2 O emission for capturing cropland-N2 O emission changes. Improving the representation of policy interventions is also recommended for future projections.


Assuntos
Produtos Agrícolas , Fertilizantes , Agricultura , China , Óxido Nitroso , Solo
3.
Glob Chang Biol ; 24(8): 3302-3316, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28994230

RESUMO

Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and total GHG emissions were modeled using the CoupModel for four scenarios: (1) business as usual-Norway spruce with average soil water table of -40 cm; (2) willow with groundwater at -20 cm; (3) reed canary grass with groundwater at -10 cm; and (4) a fully rewetted peatland. The predictions were based on previous model calibrations with several high-resolution datasets consisting of water, heat, carbon, and nitrogen cycling. Spruce growth was calibrated by tree-ring data that extended the time period covered. The GHG balance of four scenarios, including vegetation and soil, were 4.7, 7.1, 9.1, and 6.2 Mg CO2 eq ha-1  year-1 , respectively. The total soil emissions (including litter and peat respiration CO2 + N2 O + CH4 ) were 33.1, 19.3, 15.3, and 11.0 Mg CO2 eq ha-1  year-1 , respectively, of which the peat loss contributed 35%, 24%, and 7% of the soil emissions for the three drained scenarios, respectively. No peat was lost for the wet peatland. It was also found that draining increases vegetation growth, but not as drastically as peat respiration does. The cost-benefit analysis (CBA) is sensitive to time frame, discount rate, and carbon price. Our results indicate that the net benefit was greater with a somewhat higher soil water table and when the peatland was vegetated with willow and reed canary grass (Scenarios 2 and 3). We conclude that saving peat and avoiding methane release using fairly wet conditions can significantly reduce GHG emissions, and that this strategy should be considered for land use planning and policy-making.


Assuntos
Agricultura , Análise Custo-Benefício , Ecossistema , Agricultura Florestal , Gases de Efeito Estufa/análise , Água Subterrânea/análise , Modelos Biológicos , Suécia
4.
Ambio ; 53(7): 970-983, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696060

RESUMO

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Assuntos
Conservação dos Recursos Naturais , União Europeia , Agricultura Florestal , Solo , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/métodos , Solo/química , Florestas , Sequestro de Carbono , Recuperação e Remediação Ambiental/métodos , Mudança Climática , Ecossistema , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA