Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 512(7515): 445-8, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164755

RESUMO

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.


Assuntos
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Cromatina/genética , Análise por Conglomerados , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Genéticos , Anotação de Sequência Molecular , Regiões Promotoras Genéticas/genética , Pupa/genética , Pupa/crescimento & desenvolvimento , RNA não Traduzido/genética , Análise de Sequência de RNA
2.
Nature ; 512(7515): 453-6, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164757

RESUMO

Despite the large evolutionary distances between metazoan species, they can show remarkable commonalities in their biology, and this has helped to establish fly and worm as model organisms for human biology. Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. Here we map the genome-wide binding locations of 165 human, 93 worm and 52 fly transcription regulatory factors, generating a total of 1,019 data sets from diverse cell types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous regulatory factor families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding of the regulatory underpinnings of model organism biology and how these relate to human biology, development and disease.


Assuntos
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Evolução Molecular , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/crescimento & desenvolvimento , Imunoprecipitação da Cromatina , Sequência Conservada/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Humanos , Anotação de Sequência Molecular , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/genética , Fatores de Transcrição/genética
3.
Genome Res ; 26(10): 1441-1450, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27531719

RESUMO

We generated detailed RNA-seq data for the nematode Caenorhabditis elegans with high temporal resolution in the embryo as well as representative samples from post-embryonic stages across the life cycle. The data reveal that early and late embryogenesis is accompanied by large numbers of genes changing expression, whereas fewer genes are changing in mid-embryogenesis. This lull in genes changing expression correlates with a period during which histone mRNAs produce almost 40% of the RNA-seq reads. We find evidence for many more splice junctions than are annotated in WormBase, with many of these suggesting alternative splice forms, often with differential usage over the life cycle. We annotated internal promoter usage in operons using SL1 and SL2 data. We also uncovered correlated transcriptional programs that span >80 kb. These data provide detailed annotation of the C. elegans transcriptome.


Assuntos
Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Anotação de Sequência Molecular
4.
Science ; 370(6521): 1186-1191, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33273096

RESUMO

Definitive hematopoietic stem and progenitor cells (HSPCs) arise from the transdifferentiation of hemogenic endothelial cells (hemECs). The mechanisms of this endothelial-to-hematopoietic transition (EHT) are poorly understood. We show that microRNA-223 (miR-223)-mediated regulation of N-glycan biosynthesis in endothelial cells (ECs) regulates EHT. miR-223 is enriched in hemECs and in oligopotent nascent HSPCs. miR-223 restricts the EHT of lymphoid-myeloid lineages by suppressing the mannosyltransferase alg2 and sialyltransferase st3gal2, two enzymes involved in protein N-glycosylation. ECs that lack miR-223 showed a decrease of high mannose versus sialylated sugars on N-glycoproteins such as the metalloprotease Adam10. EC-specific expression of an N-glycan Adam10 mutant or of the N-glycoenzymes phenocopied miR-223 mutant defects. Thus, the N-glycome is an intrinsic regulator of EHT, serving as a key determinant of the hematopoietic fate.


Assuntos
Transdiferenciação Celular , Células Endoteliais/citologia , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/citologia , MicroRNAs/fisiologia , Polissacarídeos/biossíntese , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Células Endoteliais/metabolismo , Genes Reporter , Glicômica , Glicosilação , Células-Tronco Hematopoéticas/metabolismo , Manosiltransferases/metabolismo , MicroRNAs/genética , Sialiltransferases/metabolismo , Peixe-Zebra , beta-Galactosídeo alfa-2,3-Sialiltransferase
5.
Nat Cell Biol ; 21(3): 348-358, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742093

RESUMO

Vertebrate tissues exhibit mechanical homeostasis, showing stable stiffness and tension over time and recovery after changes in mechanical stress. However, the regulatory pathways that mediate these effects are unknown. A comprehensive identification of Argonaute 2-associated microRNAs and mRNAs in endothelial cells identified a network of 122 microRNA families that target 73 mRNAs encoding cytoskeletal, contractile, adhesive and extracellular matrix (CAM) proteins. The level of these microRNAs increased in cells plated on stiff versus soft substrates, consistent with homeostasis, and suppressed targets via microRNA recognition elements within the 3' untranslated regions of CAM mRNAs. Inhibition of DROSHA or Argonaute 2, or disruption of microRNA recognition elements within individual target mRNAs, such as connective tissue growth factor, induced hyper-adhesive, hyper-contractile phenotypes in endothelial and fibroblast cells in vitro, and increased tissue stiffness, contractility and extracellular matrix deposition in the zebrafish fin fold in vivo. Thus, a network of microRNAs buffers CAM expression to mediate tissue mechanical homeostasis.


Assuntos
Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Regiões 3' não Traduzidas , Nadadeiras de Animais/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Homeostase/genética , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Curr Stem Cell Rep ; 4(1): 22-32, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29910999

RESUMO

PURPOSE OF THE REVIEW: Blood specification is a highly dynamic process, whereby committed hemogenic endothelial cells (ECs) progressively transdifferentiate into multipotent, self-renewing hematopoietic stem cells (HSCs). Massive changes in gene expression must occur to switch cell identity, however the factors that mediate such an effect were a mystery until recently. This review summarizes the higher-order mechanisms involved in endothelial to hematopoietic reprogramming identified thus far. RECENT FINDINGS: Accumulating evidence from mouse and zebrafish studies reveal that numerous chromatin-modifying (epigenetic) and RNA-modifying (epitranscriptomic) factors are required for the formation of HSCs from hemogenic endothelium. These genes function throughout the endothelial-hematopoietic transition, suggesting a dynamic interplay between 'epi'-machineries. SUMMARY: Epigenetic and epitranscriptomic regulation are key mechanisms for reshaping global EC gene expression patterns to those that support HSC production. Future studies that capture modification dynamics should bring us closer to a complete understanding of how HSCs transition from hemogenic endothelium at the molecular level.

7.
Dev Cell ; 40(6): 552-565.e5, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28350988

RESUMO

Proper functioning of an organism requires cells and tissues to behave in uniform, well-organized ways. How this optimum of phenotypes is achieved during the development of vertebrates is unclear. Here, we carried out a multi-faceted and single-cell resolution screen of zebrafish embryonic blood vessels upon mutagenesis of single and multi-gene microRNA (miRNA) families. We found that embryos lacking particular miRNA-dependent signaling pathways develop a vascular trait similar to wild-type, but with a profound increase in phenotypic heterogeneity. Aberrant trait variance in miRNA mutant embryos uniquely sensitizes their vascular system to environmental perturbations. We discovered a previously unrecognized role for specific vertebrate miRNAs to protect tissue development against phenotypic variability. This discovery marks an important advance in our comprehension of how miRNAs function in the development of higher organisms.


Assuntos
Embrião não Mamífero/metabolismo , MicroRNAs/metabolismo , Vertebrados/embriologia , Vertebrados/genética , Animais , Artérias/embriologia , Artérias/metabolismo , Contagem de Células , Células Endoteliais/metabolismo , Redes Reguladoras de Genes , Genoma , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Homozigoto , MicroRNAs/genética , Morfogênese , Mutagênese/genética , Mutação/genética , Fenótipo , Pseudópodes/metabolismo , Característica Quantitativa Herdável , Estresse Fisiológico , Peixe-Zebra/embriologia , Peixe-Zebra/genética
8.
Sci Rep ; 6: 32386, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572667

RESUMO

A large number of microRNAs (miRNAs) are grouped into families derived from the same phylogenetic ancestors. miRNAs within a family often share the same physiological functions despite differences in their primary sequences, secondary structures, or chromosomal locations. Consequently, the generation of animal models to analyze the activity of miRNA families is extremely challenging. Using zebrafish as a model system, we successfully provide experimental evidence that a large number of miRNAs can be simultaneously mutated to abrogate the activity of an entire miRNA family. We show that injection of the Cas9 nuclease and two, four, ten, and up to twenty-four multiplexed single guide RNAs (sgRNAs) can induce mutations in 90% of the miRNA genomic sequences analyzed. We performed a survey of these 45 mutations in 10 miRNA genes, analyzing the impact of our mutagenesis strategy on the processing of each miRNA both computationally and in vivo. Our results offer an effective approach to mutate and study the activity of miRNA families and pave the way for further analysis on the function of complex miRNA families in higher multicellular organisms.


Assuntos
Sistemas CRISPR-Cas/genética , MicroRNAs/genética , Família Multigênica/genética , Mutagênese/genética , Animais , Cromossomos/genética , Genoma/genética , Mutação , Peixe-Zebra
9.
Epigenetics ; 9(1): 62-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24149573

RESUMO

While most eukaryotic genomes contain transposable elements that can provide select evolutionary advantages to a given organism, failure to tightly control the mobility of such transposable elements can result in compromised genomic integrity of both parental and subsequent generations. Together with the Piwi subfamily of Argonaute proteins, small, non-coding Piwi-interacting RNAs (piRNAs) primarily function in the germ line to defend the genome against the potentially deleterious effects that can be caused by transposition. Here, we describe recent discoveries concerning the biogenesis and function of piRNAs in the nematode Caenorhabditis elegans, illuminating how the faithful production of these mature species can impart a robust defense mechanism for the germ line to counteract problems caused by foreign genetic elements across successive generations by contributing to the epigenetic memory of non-self vs. self.


Assuntos
Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Elementos de DNA Transponíveis , Epigênese Genética , Instabilidade Genômica , Humanos , RNA Interferente Pequeno/genética , Reprodução
10.
Dev Cell ; 31(2): 145-58, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25373775

RESUMO

The Piwi/Piwi-interacting RNA (piRNA) pathway protects the germline from the activity of foreign sequences such as transposons. Remarkably, tens of thousands of piRNAs arise from a minimal number of discrete genomic regions. The extent to which clustering of these small RNA genes contributes to their coordinated expression remains unclear. We show that C. elegans SNPC-4, the Myb-like DNA-binding subunit of the small nuclear RNA activating protein complex, binds piRNA clusters in a germline-specific manner and is required for global piRNA expression. SNPC-4 localization is mutually dependent with localization of piRNA biogenesis factor PRDE-1. SNPC-4 exhibits an atypical widely distributed binding pattern that "coats" piRNA domains. Discrete peaks within the domains occur frequently at RNA-polymerase-III-occupied transfer RNA (tRNA) genes, which have been implicated in chromatin organization. We suggest that SNPC-4 binding establishes a positive expression environment across piRNA domains, providing an explanation for the conserved clustering of individually transcribed piRNA genes.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , RNA Polimerase III/genética , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , Transdução de Sinais/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA