Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34789574

RESUMO

Extrachromosomal circular DNA (eccDNA) originates from linear chromosomal DNA in various human tissues under physiological and disease conditions. The genomic origins of eccDNA have largely been investigated using in vitro-amplified DNA. However, in vitro amplification obscures quantitative information by skewing the total population stoichiometry. In addition, the analyses have focused on eccDNA stemming from single-copy genomic regions, leaving eccDNA from multicopy regions unexamined. To address these issues, we isolated eccDNA without in vitro amplification (naïve small circular DNA, nscDNA) and assessed the populations quantitatively by integrated genomic, molecular, and cytogenetic approaches. nscDNA of up to tens of kilobases were successfully enriched by our approach and were predominantly derived from multicopy genomic regions including segmental duplications (SDs). SDs, which account for 5% of the human genome and are hotspots for copy number variations, were significantly overrepresented in sperm nscDNA, with three times more sequencing reads derived from SDs than from the entire single-copy regions. SDs were also overrepresented in mouse sperm nscDNA, which we estimated to comprise 0.2% of nuclear DNA. Considering that eccDNA can be integrated into chromosomes, germline-derived nscDNA may be a mediator of genome diversity.


Assuntos
DNA Circular , Células Germinativas , Animais , Cromossomos , DNA , Variações do Número de Cópias de DNA , Genoma Humano , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Duplicações Segmentares Genômicas , Espermatozoides
2.
Kidney Int ; 91(4): 856-867, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27988209

RESUMO

Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension.


Assuntos
Pressão Arterial , Hipertensão/enzimologia , Túbulos Renais/enzimologia , NG-Nitroarginina Metil Éster , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina , Cloreto de Sódio na Dieta , Angiotensina II/metabolismo , Animais , Modelos Animais de Doenças , Canais Epiteliais de Sódio/metabolismo , Regulação Enzimológica da Expressão Gênica , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Túbulos Renais/fisiopatologia , Fígado/enzimologia , Camundongos Transgênicos , Natriurese , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Eliminação Renal , Sistema Renina-Angiotensina/genética , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Fatores de Tempo
3.
J Vis Exp ; (181)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35377353

RESUMO

The CRISPR-Cas9 gene-editing system, based on genome repair mechanisms, enables the generation of gene-modified mouse models more quickly and easily relative to traditional homologous recombination. The CRISPR-Cas9 system is particularly attractive when a single-point mutation is desired. The gap junction protein, Connexin 43 (Cx43), is encoded by gene Gja1, which has a single coding exon and cannot be spliced. However, Gja1 produces not only full-length Cx43 protein but up to six N-terminus truncated isoforms by a process known as internal translation, the result of ribosomal translation initiation at internal AUG (Methionine) start sites. GJA1-20k is the most commonly generated truncated isoform of Cx43 initiated at the AUG codon at position 213 of Gja1 mRNA. Because residue 213 occurs at the end of the last transmembrane domain of Cx43, GJA1-20k is effectively the 20 kDa C-terminus tail of Cx43 as an independent protein. Previous investigators identified, in cells, that a critical role of GJA1-20k is to facilitate trafficking of full-length Cx43 gap junction hemichannels to the plasma membrane. To examine this phenomenon in vivo, a mutant mouse with a Gja1 point-mutation was generated that replaces the ATG (Methionine) at residue 213 with TTA (Leucine, M213L mutation). The result of M213L is that Gja1 mRNA and full-length Cx43 are still generated, yet the translation of Gja1-20k is significantly reduced. This report focuses on choosing the restriction enzyme site to develop a one amino acid mutated (Gja1M213L/M213L) mouse model. This protocol describes genetically modified mice by the CRISPR-Cas9 system and rapid genotyping by combining PCR and restriction enzyme treatments.


Assuntos
Junções Comunicantes , Animais , Modelos Animais de Doenças , Junções Comunicantes/metabolismo , Camundongos , Domínios Proteicos , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Nat Med ; 8(4): 399-402, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11927947

RESUMO

The influence of maternally transmitted immunoglobulins on the development of autoimmune diabetes mellitus in genetically susceptible human progeny remains unknown. Given the presence of islet beta cell-reactive autoantibodies in prediabetic nonobese diabetic (NOD) mice, we abrogated the maternal transmission of such antibodies in order to assess their influence on the susceptibility of progeny to diabetes. First, we used B cell-deficient NOD mothers to eliminate the transmission of maternal immunoglobulins. In a complementary approach, we used immunoglobulin transgenic NOD mothers to exclude autoreactive specificities from the maternal B-cell repertoire. Finally, we implanted NOD embryos in pseudopregnant mothers of a non-autoimmune strain. The NOD progeny in all three groups were protected from spontaneous diabetes. These findings demonstrate that the maternal transmission of antibodies is a critical environmental parameter influencing the ontogeny of T cell-mediated destruction of islet beta cells in NOD mice. It will be important to definitively determine whether the transmission of maternal autoantibodies in humans affects diabetes progression in susceptible offspring.


Assuntos
Autoanticorpos/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Troca Materno-Fetal/imunologia , Animais , Feminino , Humanos , Imunoglobulinas/genética , Ilhotas Pancreáticas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Gravidez
5.
Proc Natl Acad Sci U S A ; 105(37): 14023-7, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18779564

RESUMO

Expression of FOXP3, a potent gene-specific transcriptional repressor, in regulatory T cells is required to suppress autoreactive and alloreactive effector T cell function. Recent studies have shown that FOXP3 is an acetylated protein in a large nuclear complex and FOXP3 actively represses transcription by recruiting enzymatic corepressors, including histone modification enzymes. The mechanism by which extracellular stimuli regulate the FOXP3 complex ensemble is currently unknown. Although TGF-beta is known to induce murine FOXP3(+) Treg cells, TGF-beta in combination with IL-6 attenuates the induction of FOXP3 functional activities. Here we show that TCR stimuli and TGF-beta signals modulate the disposition of FOXP3 into different subnuclear compartments, leading to enhanced chromatin binding in human CD4(+)CD25(+) regulatory T cells. TGF-beta treatment increases the level of acetylated FOXP3 on chromatin and site-specific recruitment of FOXP3 on the human IL-2 promoter. However, the proinflammatory cytokine IL-6 down-regulates FOXP3 binding to chromatin in the presence of TGF-beta. Moreover, histone deacetylation inhibitor (HDACi) treatment abrogates the down-regulating effects of IL-6 and TGF-beta. These studies indicate that HDACi can enhance regulatory T cell function via promoting FOXP3 binding to chromatin even in a proinflammatory cellular microenvironment. Collectively, our data provide a framework of how different signals affect intranuclear redistribution, posttranslational modifications, and chromatin binding patterns of FOXP3.


Assuntos
Cromatina/genética , Fatores de Transcrição Forkhead/metabolismo , Interleucina-6/farmacologia , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/farmacologia , Acetilação , Células Cultivadas , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Ligação Proteica
6.
Invest Ophthalmol Vis Sci ; 61(6): 20, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32516406

RESUMO

Purpose: TH17 cells play an important role in host defense and autoimmunity yet very little is known about the role of IL17 in herpes simplex virus (HSV)-1 infectivity. To better understand the relationship between IL17 and HSV-1 infection, we assessed the relative impact of IL17A-deficiency and deficiency of its receptors on HSV-1 responses in vivo. Methods: We generated IL17RA-/- and IL17RA-/-RC-/- mice in-house and infected them along with IL17A-/- and IL17RC-/- mice in the eyes with 2 × 105 PFU/eye of wild type (WT) HSV-1 strain McKrae. WT C57BL/6 mice were used as control. Virus replication in the eye, survival, corneal scarring (CS), angiogenesis, levels of latency-reactivation, and levels of CD8 and exhaustion markers (PD1, TIM3, LAG3, CTLA4, CD244, and CD39) in the trigeminal ganglia (TG) of infected mice were determined on day 28 postinfection. Results: No significant differences in virus replication in the eye, survival, latency, reactivation, and exhaustion markers were detected among IL17A-/-, IL17RA-/-, IL17RC-/-, IL17RA-/-RC-/-, and WT mice. However, mice lacking IL17 had significantly less CS and angiogenesis than WT mice. In addition, angiogenesis levels in the absence of IL17RC and irrespective of the absence of IL17RA were significantly less than in IL17A- or IL17RA-deficient mice. Conclusions: Our results suggest that the absence of IL17 protects against HSV-1-induced eye disease, but has no role in protecting against virus replication, latency, or reactivation. In addition, our data provide rationale for blocking IL17RC function rather than IL17A or IL17RA function as a key driver of HSV-1-induced eye disease.


Assuntos
Herpesvirus Humano 1/fisiologia , Ceratite Herpética/fisiopatologia , Células Th17/fisiologia , Animais , Biomarcadores/metabolismo , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/fisiopatologia , Neovascularização da Córnea/virologia , Modelos Animais de Doenças , Interleucina-17/metabolismo , Ceratite Herpética/metabolismo , Ceratite Herpética/virologia , Infecção Latente , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Virulência , Latência Viral/fisiologia , Replicação Viral/fisiologia
7.
J Clin Invest ; 130(9): 4858-4870, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32525845

RESUMO

Connexin-43 (Cx43) gap junctions provide intercellular coupling, which ensures rapid action potential propagation and synchronized heart contraction. Alterations in Cx43 localization and reductions in gap junction coupling occur in failing hearts, contributing to ventricular arrhythmias and sudden cardiac death. Recent reports have found that an internally translated Cx43 isoform, GJA1-20k, is an auxiliary subunit for the trafficking of Cx43 in heterologous expression systems. Here, we have created a mouse model by using CRISPR technology to mutate a single internal translation initiation site in Cx43 (M213L mutation), which generates full-length Cx43, but not GJA1-20k. We found that GJA1M213L/M213L mice had severely abnormal electrocardiograms despite preserved contractile function, reduced total Cx43, and reduced gap junctions, and they died suddenly at 2 to 4 weeks of age. Heterozygous GJA1M213L/WT mice survived to adulthood with increased ventricular ectopy. Biochemical experiments indicated that cytoplasmic Cx43 had a half-life that was 50% shorter than membrane-associated Cx43. Without GJA1-20k, poorly trafficked Cx43 was degraded. The data support that GJA1-20k, an endogenous entity translated independently of Cx43, is critical for Cx43 gap junction trafficking, maintenance of Cx43 protein, and normal electrical function of the mammalian heart.


Assuntos
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Ventrículos do Coração/metabolismo , Proteólise , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Sistemas CRISPR-Cas , Conexina 43/genética , Junções Comunicantes/genética , Junções Comunicantes/patologia , Ventrículos do Coração/patologia , Camundongos , Camundongos Mutantes , Transporte Proteico
8.
Exp Mol Pathol ; 87(1): 1-11, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19450579

RESUMO

The HER2 gene encodes the receptor tyrosine kinase HER2 and is often over-expressed or amplified in breast cancer. Up-regulation of HER2 contributes to tumor progression. Many aspects of tumor growth are favorably affected through activation of HER2 signaling. Indeed, HER2 plays a role in increasing proliferation and survival of the primary tumor and distant lesions which upon completion of full transformation cause metastases. P185(HER2/neu) receptors and signaling from them and associated molecules increase motility of both intravasating and extravasating cells, decrease apoptosis, enhance signaling interactions with the microenvironment, regulate adhesion, as well as a multitude of other functions. Recent experimental and clinical evidence supports the view that the spread of incompletely transformed cells occurs at a very early stage in tumor progression. This review concerns the identification and characterization of HER2, the evolution of the metastasis model, and the more recent cancer stem cell model. In particular, we review the evidence for an emerging mechanism of HER2(+) breast cancer progression, whereby the untransformed HER2-expressing cell shows characteristics of stem/progenitor cell, metastasizes, and then completes its final transformation at the secondary site.


Assuntos
Neoplasias da Mama , Metástase Neoplásica , Receptor ErbB-2/metabolismo , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Transformação Celular Neoplásica , Progressão da Doença , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Receptor ErbB-2/genética , Transdução de Sinais/fisiologia , Células-Tronco
9.
Exp Mol Pathol ; 87(3): 173-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19666020

RESUMO

A novel intrauterine transplantation (IUT) approach was developed to improve the efficiency of engraftment of hematopoietic stem cells (HSCs). HSCs with a green fluorescent protein (GFP) reporter gene were transplanted in utero on days 12.5, 13.5 and 14.5 post coitum (p.c.). The degree of chimerism of donor cells in recipient newborn mice was examined using fluorescent microscopy, polymerase chain reaction (PCR), fluorescence-activated cell sorting (FACS), and fluorescence in situ hybridization (FISH) analyses. Microscopic examination revealed the presence of green fluorescent signal in the peripheral blood of the chimeric mice. The highest survival rate (47%) as well as the highest chimerism rate (73%) were achieved by our new approach in the newborn mice that were subjected to in utero transplantation (IUT) on day 12.5 p.c. (E12.5) compared to the conventional IUT method. FACS analysis indicated that 1.55+/-1.10% of peripheral blood cells from the newborn mice were GFP-positive donor cells. FISH showed that cells containing the donor-specific GFP sequence were present in the bone marrow (BM) of the chimeric mice. Thus, the efficiency of chimera production with this new method of IUT was significantly improved over the existing IUT techniques and instruments.


Assuntos
Quimerismo , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/fisiologia , Útero , Animais , Separação Celular , Sobrevivência Celular , Quimera , Feminino , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/sangue , Proteínas de Fluorescência Verde/genética , Transplante de Células-Tronco Hematopoéticas/instrumentação , Células-Tronco Hematopoéticas/citologia , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos , Microscopia de Fluorescência , Modelos Animais
10.
Front Physiol ; 10: 147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863319

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest epithelial malignancies and remains difficult to treat. Pancreatic intraepithelial neoplasias (PanINs) represent the majority of the pre-cancer lesions in the pancreas. The PDAC microenvironment consists of activated pancreatic stellate cells (PSCs) and immune cells, which are thought to contribute to neoplastic transformation. However, the signaling events involved in driving the transition from the neoplastic precursor to the more advanced and aggressive forms in the pancreas are not well understood. Recepteur d'Origine Nantais (RON) is a c-MET family receptor tyrosine kinase that is implicated in playing a role in cell proliferation, migration and other aspects of tumorigenesis. Macrophage stimulating protein (MSP) is the ligand for RON and becomes activated upon proteolytic cleavage by matriptase (also known as ST14), a type II transmembrane serine protease. In the current study, by immunohistochemistry (IHC) analysis of human pancreatic tissues, we found that the expression levels MSP and matriptase are drastically increased during the transition from the preneoplastic PanIN stages to the more advanced and aggressive PDAC. Moreover, RON is highly expressed in both PDAC and in cancer-associated stellate cells. In contrast, MSP, RON, and matriptase are expressed at low levels, if any, in normal pancreas. Our study underscores an emerging role of MSP-RON autocrine and paracrine signaling events in driving malignant progression in the pancreas.

11.
Sci Rep ; 8(1): 12394, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120290

RESUMO

The incidence of ovarian cancer dramatically increases in early menopause but the factors contributing to cancer onset are unclear. Most ovarian cancers originate in the fallopian tube with subsequent implantation of malignant cells into the ovary. However, the events and conditions that lead to cancer cell implantation are unknown. To quantify which conditions are conducive to the seeding of cancer cells in an immunocompetent mouse model, we surgically implanted mouse ovarian cancer cells into the oviducts of syngeneic mice and simulated conditions associated with ovulatory wound repair, incessant ovulation, ovarian surface scarring, and aging. We found that the dominant site of cancer cell seeding was not the ovary but the nearby surgical wound site, which was associated with a strong and persistent inflammatory reaction. Conditions in the ovary associated with inflammation, such as acute ovulatory wound repair, active healing of the scarred ovarian surface, and mouse aging, contributed to increased seeding of the cancer cells to the surgical wound site and tissues surrounding the ovary. Changes in the ovary not accompanied by inflammation, such as completed ovulatory cycles and fully-healed scars on the ovarian surface, did not contribute to increased cancer cell seeding. We conclude that inflammation is the most likely mechanism by which ovulation and postmenopausal events contribute to the increased risk of ovarian cancer.


Assuntos
Inflamação/patologia , Inoculação de Neoplasia , Neoplasias Ovarianas/patologia , Animais , Atrofia , Biópsia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ovulação
12.
Sci Rep ; 7(1): 14017, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070831

RESUMO

The forkhead box transcription factor FOXC1 plays a critical role in embryogenesis and the development of many organs. Its mutations and high expression are associated with many human diseases including breast cancer. Although FOXC1 knockout mouse studies showed that it is not required for mammary gland development during puberty, it is not clear whether its overexpression alters normal mammary development in vivo. To address this question, we generated transgenic mice with mammary-specific FOXC1 overexpression. We report that transgenic FOXC1 overexpression suppresses lobuloalveologenesis and lactation in mice. This phenotype is associated with higher percentages of estrogen receptor-, progesterone receptor-, or ki67-positive mammary epithelial cells in the transgenic mice at the lactation stage. We also show that expression of the Elf5 transcription factor, a master regulator of mammary alveologenesis and luminal cell differentiation, is markedly reduced in mammary epithelial cells of transgenic mice. Likewise, levels of activated Stat5, another inducer of alveolar expansion and a known mediator of the Elf5 effect, are also lowered in those cells. In contrast, the cytokeratin 8-positive mammary cell population with progenitor properties is elevated in the transgenic mice at the lactation stage, suggesting inhibition of mammary cell differentiation. These results may implicate FOXC1 as a new important regulator of mammary gland development.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Glândulas Mamárias Animais/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Queratina-8/metabolismo , Antígeno Ki-67/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/fisiologia , Camundongos , Camundongos Transgênicos , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Fator de Transcrição STAT5/metabolismo , Fatores de Transcrição/metabolismo
13.
Front Immunol ; 8: 279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28348568

RESUMO

The transcription factor FOXP3 plays key roles in the development and function of regulatory T cells (Treg) capable of preventing and correcting immunopathology. There has been much interest in exploiting Treg as adoptive cell therapy in man, but issues of lack of nominal antigen-specificity and stability of FoxP3 expression in the face of pro-inflammatory cytokines have been a concern. In order to enable fundamental studies of human FOXP3 (hFOXP3) gene regulation and to provide preclinical tools to guide the selection of drugs that might modulate hFOXP3 expression for therapeutic purposes, we generated hFOXP3/AmCyan bacterial artificial chromosome (BAC) transgenic mice and transfectants, wherein hFOXP3 expression was read out as AmCyan expression. Using the transgenic mice, one can now investigate hFOXP3 gene expression under defined experimental conditions used for mouse Foxp3 (mFoxp3) studies. Here, we demonstrate that hFOXP3 gene expression in BAC transgenic mice is solely restricted to CD4+ T-cells, as for mFoxp3 gene expression, showing that hFOXP3 expression in Treg cells depends on fundamentally similar processes to mFoxp3 expression in these cells. Similarly, hFOXP3 expression could be observed in mouse T-cells through TCR stimulation in the presence of TGF-ß. These data suggest that, at least in part, cell type-specific human and mouse foxp3 gene expression is regulated by common regulatory regions which for the human, are located within the 110-kb human FOXP3 BAC DNA. To investigate hFOXP3 gene expression further and to screen potential therapeutics in modulating hFOXP3 gene expression in vitro, we also generated hFOXP3/AmCyan expression reporter cell lines. Using the reporter cells and transcription factor inhibitors, we showed that, just as for mFoxp3 expression, inhibitors of NF-κB, AP1, STAT5, Smad3, and NFAT also block hFOXP3 expression. hFOXP3 induction in the reporter cells was also TGF-ß dependent, and substantially enhanced by an mTOR inhibitor, Torin1. In both the reporter transgenic mice and cell lines, histone H4 molecules in the hFOXP3 promoter and enhancers located in human CNS1 and CNS2 regions were highly acetylated in natural Treg and TCR/TGF-ß-induced Treg, indicating hFOXP3 gene expression is regulated by mechanisms similar to those previously identified for the mFoxp3 gene.

14.
DNA Cell Biol ; 24(7): 403-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16008509

RESUMO

We have injected human CD34+lin- cells derived from cord blood (CB) into the goat fetuses via in utero at 45-55 days gestation under guidance of B-scan ultrasonograph. Sixty out of 68 fetuses injected survived to full term. The long-term survival of the human cells in transplant goat has been tested by various experimental methods, including FACS analysis, real-time PCR, RT-PCR, Southern-blot hybridization, FISH, as well as immunohistochemical assays. All the 60 transplant goats demonstrated engrafted human cells, including myeloid, B-lymphoid, and erythroid lineages. The yield of the human CD34+ cells varied, but was not linked with sex and age. High numbers of human cells could be detected for at least 16 months after birth. Immunohistochemical analyses revealed that the human cells were present not only in blood but also in other tissues, such as liver, of the transplant goats. In addition, a human-specific serum albumin and the hepatocyte nuclear factor (hHNF-3beta) mRNAs specific to human hepato-antigen could be readily detected in the livers of the transplant goats. Our results demonstrate that this in utero xenograft model should be useful for expansion of human HSC and possibly for the evaluating the effectiveness of prenatal treatment of human genetic diseases.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Células-Tronco Hematopoéticas/metabolismo , Transplante Heterólogo , Animais , Antígenos CD34/metabolismo , Linhagem da Célula , Transplante de Células-Tronco de Sangue do Cordão Umbilical/mortalidade , Feminino , Feto/citologia , Feto/cirurgia , Citometria de Fluxo , Cabras , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Injeções Intraperitoneais , Fígado/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cavidade Peritoneal/diagnóstico por imagem , Cavidade Peritoneal/embriologia , Reação em Cadeia da Polimerase , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Albumina Sérica/genética , Albumina Sérica/metabolismo , Fatores de Tempo , Quimeras de Transplante/genética , Ultrassonografia
16.
Immunol Rev ; 212: 99-113, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16903909

RESUMO

Our recent studies have identified dynamic protein ensembles containing forkhead box protein 3 (FOXP3) that provide insight into the molecular complexity of suppressor T-cell activities, and it is our goal to determine how these ensembles regulate FOXP3's transcriptional activity in vivo. In this review, we summarize our current understanding of how FOXP3 expression is induced and how FOXP3 functions in vivo as a transcriptional regulator by assembling a multisubunit complex involved in histone modification as well as chromatin remodeling.


Assuntos
Montagem e Desmontagem da Cromatina , Fatores de Transcrição Forkhead/metabolismo , Histonas/metabolismo , Linfócitos T Reguladores/imunologia , Transcrição Gênica , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/terapia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/genética , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Humanos , Imunoterapia , Camundongos , Linfócitos T Reguladores/química , Linfócitos T Reguladores/enzimologia
17.
Proc Natl Acad Sci U S A ; 100(16): 9220-5, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12867596

RESUMO

We investigated the assembly and activation of the epidermal growth factor receptor (EGFR)-p185c-neu heterodimer by using a sequential immunoprecipitation methodology. Using this approach we detected heterodimers and also higher-ordered oligomeric complexes. Phosphorylated EGFR-p185c-neu heterodimeric forms were detected in the absence of EGF, but the species became highly phosphorylated after EGF stimulation. To evaluate heterodimer formation and additional transactivation by EGF, we investigated the roles of the four extracellular subdomains of p185c-neu and the EGFR. Subdomains I-IV of the EGFR dimerized with subdomains I-IV of p185c-neu, respectively, in a parallel manner. In addition, subdomains I-IV of the EGFR also associated with p185c-neu subdomains III, IV, I, and II, respectively. A lack of one of the p185c-neu cysteine-rich domains (subdomains II or IV) resulted in a loss of EGF-induced transactivation. These data suggest that two cysteine-rich domains play defining roles in ligand-dependent transactivation and that both of these cysteine-rich extracellular subdomains as well as non-cysteine-rich extracellular subdomains are involved in ligand-independent interactions with the EGFR. Our studies provide biochemical evidence of the role of the cysteine-rich domains of p185c-neu in assembly and transactivation of erbB complexes and also indicate that these subdomains might be useful clinical targets.


Assuntos
Receptores ErbB/química , Receptor ErbB-2/química , Animais , Células COS , Cisteína/química , Dimerização , Receptores ErbB/metabolismo , Vetores Genéticos , Ligantes , Camundongos , Modelos Químicos , Estrutura Terciária de Proteína , Receptor ErbB-2/metabolismo , Ativação Transcricional , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA