Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 42(8): 1005-1022, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708026

RESUMO

BACKGROUND: Vascular smooth muscle cells (SMCs) undergo complex phenotypic modulation with atherosclerotic plaque formation in hyperlipidemic mice, which is characterized by de-differentiation and heterogeneous increases in the expression of macrophage, fibroblast, osteogenic, and stem cell markers. An increase of cellular cholesterol in SMCs triggers similar phenotypic changes in vitro with exposure to free cholesterol due to cholesterol entering the endoplasmic reticulum, triggering endoplasmic reticulum stress and activating Perk (protein kinase RNA-like endoplasmic reticulum kinase) signaling. METHODS: We generated an SMC-specific Perk knockout mouse model, induced hyperlipidemia in the mice by AAV-PCSK9DY injection, and subjected them to a high-fat diet. We then assessed atherosclerotic plaque formation and performed single-cell transcriptomic studies using aortic tissue from these mice. RESULTS: SMC-specific deletion of Perk reduces atherosclerotic plaque formation in male hyperlipidemic mice by 80%. Single-cell transcriptomic data identify 2 clusters of modulated SMCs in hyperlipidemic mice, one of which is absent when Perk is deleted in SMCs. The 2 modulated SMC clusters have significant overlap of transcriptional changes, but the Perk-dependent cluster uniquely shows a global decrease in the number of transcripts. SMC-specific Perk deletion also prevents migration of both contractile and modulated SMCs from the medial layer of the aorta. CONCLUSIONS: Our results indicate that hypercholesterolemia drives both Perk-dependent and Perk-independent SMC modulation and that deficiency of Perk significantly blocks atherosclerotic plaque formation.


Assuntos
Aterosclerose , Miócitos de Músculo Liso , Placa Aterosclerótica , eIF-2 Quinase , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Células Cultivadas , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Masculino , Camundongos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , eIF-2 Quinase/metabolismo
2.
Am J Med Genet A ; 188(8): 2389-2396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567597

RESUMO

Pathogenic variants in ACTA2, encoding smooth muscle α-actin, predispose to thoracic aortic aneurysms and dissections. ACTA2 variants altering arginine 179 predispose to a more severe, multisystemic disease termed smooth muscle dysfunction syndrome (SMDS; OMIM 613834). Vascular complications of SMDS include patent ductus arteriosus (PDA) or aortopulmonary window, early-onset thoracic aortic disease (TAD), moyamoya-like cerebrovascular disease, and primary pulmonary hypertension. Patients also have dysfunction of other smooth muscle-dependent systems, including congenital mydriasis, hypotonic bladder, and gut hypoperistalsis. Here, we describe five patients with novel heterozygous ACTA2 missense variants, p.Arg179Gly, p.Met46Arg, p.Thr204Ile, p.Arg39Cys, and p.Ile66Asn, who have clinical complications that align or overlap with SMDS. Patients with the ACTA2 p.Arg179Gly and p.Thr204Ile variants display classic features of SMDS. The patient with the ACTA2 p.Met46Arg variant exhibits exclusively vascular complications of SMDS, including early-onset TAD, PDA, and moyamoya-like cerebrovascular disease. The patient with the ACTA2 p.Ile66Asn variant has an unusual vascular complication, a large fusiform internal carotid artery aneurysm. The patient with the ACTA2 p.Arg39Cys variant has pulmonary, gastrointestinal, and genitourinary complications of SMDS but no vascular manifestations. Identifying pathogenic ACTA2 variants associated with features of SMDS is critical for aggressive surveillance and management of vascular and nonvascular complications and delineating the molecular pathogenesis of SMDS.


Assuntos
Actinas , Aneurisma da Aorta Torácica , Transtornos Cerebrovasculares , Permeabilidade do Canal Arterial , Doença de Moyamoya , Actinas/genética , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/genética , Permeabilidade do Canal Arterial/genética , Heterozigoto , Humanos , Doença de Moyamoya/genética , Músculo Liso , Mutação , Fenótipo
3.
Arterioscler Thromb Vasc Biol ; 41(1): 302-316, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028096

RESUMO

OBJECTIVE: Vascular smooth muscle cells (SMCs) dedifferentiate and initiate expression of macrophage markers with cholesterol exposure. This phenotypic switching is dependent on the transcription factor Klf4 (Krüppel-like factor 4). We investigated the molecular pathway by which cholesterol induces SMC phenotypic switching. Approach and Results: With exposure to free cholesterol, SMCs decrease expression of contractile markers, activate Klf4, and upregulate a subset of macrophage and fibroblast markers characteristic of modulated SMCs that appear with atherosclerotic plaque formation. These phenotypic changes are associated with activation of all 3 pathways of the endoplasmic reticulum unfolded protein response (UPR), Perk (protein kinase RNA-like endoplasmic reticulum kinase), Ire (inositol-requiring enzyme) 1α, and Atf (activating transcription factor) 6. Blocking the movement of cholesterol from the plasma membrane to the endoplasmic reticulum prevents free cholesterol-induced UPR, Klf4 activation, and upregulation of the majority of macrophage and fibroblast markers. Cholesterol-induced phenotypic switching is also prevented by global UPR inhibition or specific inhibition of Perk signaling. Exposure to chemical UPR inducers, tunicamycin and thapsigargin, is sufficient to induce these same phenotypic transitions. Finally, analysis of published single-cell RNA sequencing data during atherosclerotic plaque formation in hyperlipidemic mice provides preliminary in vivo evidence of a role of UPR activation in modulated SMCs. CONCLUSIONS: Our data demonstrate that UPR is necessary and sufficient to drive phenotypic switching of SMCs to cells that resemble modulated SMCs found in atherosclerotic plaques. Preventing a UPR in hyperlipidemic mice diminishes atherosclerotic burden, and our data suggest that preventing SMC transition to dedifferentiated cells expressing macrophage and fibroblast markers contributes to this decreased plaque burden.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Colesterol/toxicidade , Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator 4 Ativador da Transcrição/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Placa Aterosclerótica , eIF-2 Quinase/metabolismo
5.
Res Sq ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909460

RESUMO

Missense variants throughout ACTA2, encoding smooth muscle α-actin (αSMA), predispose to adult onset thoracic aortic disease, but variants disrupting arginine 179 (R179) lead to Smooth Muscle Dysfunction Syndrome (SMDS) characterized by childhood-onset diverse vascular diseases. Our data indicate that αSMA localizes to the nucleus in wildtype (WT) smooth muscle cells (SMCs), enriches in the nucleus with SMC differentiation, and associates with chromatin remodeling complexes and SMC contractile gene promotors, and the ACTA2 p.R179 variant decreases nuclear localization of αSMA. SMCs explanted from a SMC-specific conditional knockin mouse model, Acta2SMC-R179/+, are less differentiated than WT SMCs, both in vitro and in vivo, and have global changes in chromatin accessibility. Induced pluripotent stem cells from patients with ACTA2 p.R179 variants fail to fully differentiate from neural crest cells to SMCs, and single cell transcriptomic analyses of an ACTA2 p.R179H patient's aortic tissue shows increased SMC plasticity. Thus, nuclear αSMA participates in SMC differentiation and loss of this nuclear activity occurs with ACTA2 p.R179 pathogenic variants.

6.
Nat Cardiovasc Res ; 2(10): 937-955, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38919852

RESUMO

Missense variants throughout ACTA2, encoding smooth muscle α-actin (αSMA), predispose to adult-onset thoracic aortic disease, but variants disrupting arginine 179 (R179) lead to Smooth Muscle Dysfunction Syndrome (SMDS) characterized by diverse childhood-onset vascular diseases. Here we show that αSMA localizes to the nucleus in wildtype (WT) smooth muscle cells (SMCs), enriches in the nucleus with SMC differentiation, and associates with chromatin remodeling complexes and SMC contractile gene promotors. The ACTA2 p.R179 αSMA variant shows decreased nuclear localization. Primary SMCs from Acta2 SMC-R179C/+ mice are less differentiated than WT SMCs in vitro and in vivo and have global changes in chromatin accessibility. Induced pluripotent stem cells from patients with ACTA2 p.R179 variants fail to fully differentiate from neuroectodermal progenitor cells to SMCs, and single-cell transcriptomic analyses of an ACTA2 p.R179H patient's aortic tissue show increased SMC plasticity. Thus, nuclear αSMA participates in SMC differentiation, and loss of this nuclear activity occurs with ACTA2 p.R179 pathogenic variants.

7.
Res Sq ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37886459

RESUMO

ACTA2 pathogenic variants altering arginine 179 cause childhood-onset strokes due to moyamoya disease (MMD)-like occlusion of the distal internal carotid arteries. A smooth muscle cell (SMC)-specific knock-in mouse model (Acta2SMC-R179C/+) inserted the mutation into 67% of aortic SMCs, whereas explanted SMCs were uniformly heterozygous. Acta2R179C/+ SMCs fail to fully differentiate and maintain stem cell-like features, including high glycolytic flux, and increasing oxidative respiration (OXPHOS) with nicotinamide riboside (NR) drives the mutant SMCs to differentiate and decreases migration. Acta2SMC-R179C/+ mice have intraluminal MMD-like occlusive lesions and strokes after carotid artery injury, whereas the similarly treated WT mice have no strokes and patent lumens. Treatment with NR prior to the carotid artery injury attenuates the strokes, MMD-like lumen occlusions, and aberrant vascular remodeling in the Acta2SMC-R179C/+ mice. These data highlight the role of immature SMCs in MMD-associated occlusive disease and demonstrate that altering SMC metabolism to drive quiescence of Acta2R179C/+ SMCs attenuates strokes and aberrant vascular remodeling in the Acta2SMC-R179C/+ mice.

8.
Neurol Genet ; 7(2): e557, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33987465

RESUMO

OBJECTIVE: To discover genetic determinants of Parkinson disease (PD) motor subtypes, including tremor dominant (TD) and postural instability/gait difficulty (PIGD) forms. METHODS: In 3,212 PD cases of European ancestry, we performed a genome-wide association study (GWAS) examining 2 complementary outcome traits derived from the Unified Parkinson's Disease Rating Scale, including dichotomous motor subtype (TD vs PIGD) or a continuous tremor/PIGD score ratio. Logistic or linear regression models were adjusted for sex, age at onset, disease duration, and 5 ancestry principal components, followed by meta-analysis. RESULTS: Among 71 established PD risk variants, we detected multiple suggestive associations with PD motor subtype, including GPNMB (rs199351, p subtype = 0.01, p ratio = 0.03), SH3GL2 (rs10756907, p subtype = 0.02, p ratio = 0.01), HIP1R (rs10847864, p subtype = 0.02), RIT2 (rs12456492, p subtype = 0.02), and FBRSL1 (rs11610045, p subtype = 0.02). A PD genetic risk score integrating all 71 PD risk variants was also associated with subtype ratio (p = 0.026, ß = -0.04, 95% confidence interval = -0.07-0). Based on top results of our GWAS, we identify a novel suggestive association at the STK32B locus (rs2301857, p ratio = 6.6 × 10-7), which harbors an independent risk allele for essential tremor. CONCLUSIONS: Multiple PD risk alleles may also modify clinical manifestations to influence PD motor subtype. The discovery of a novel variant at STK32B suggests a possible overlap between genetic risk for essential tremor and tremor-dominant PD.

9.
Cureus ; 10(12): e3803, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30868017

RESUMO

PURPOSE: Studies examining the physical activity of employees within an outpatient oncology setting are absent. The goal of this pilot study was to collect baseline data on the daily activity of employees in varying job descriptions at a satellite outpatient oncology clinic of a large academic medical center. METHODS: A total of 40 employees (out of a total of 55) were accrued on this clinical trial. Each employee was given a pedometer to wear at work for a total of 20 business days, with instructions not to alter their baseline activities. Employees recorded their daily workplace pedometer activity on a personalized chart. Baseline vital signs, as well as their general job title, were recorded. RESULTS: Of the 40, 36 employees (90%) completed the study. The average steps per workday for all employees were 4455 +/- 2051, which is significantly less than the recommended 10,000 steps per day (p <0.001). There was a statistically significant difference in activity between various job descriptions, with radiation therapists having the highest daily mean steps (8853 +/- 930) and front desk staff having the lowest mean steps (3147 +/- 1010), p<0.001). CONCLUSION: Employees at a satellite outpatient oncology clinic of a large academic center, on average, do not meet the surgeon general's recommendations for daily physical activity at the workplace, with only radiation therapists approaching the recommended steps.

10.
Hypertension ; 50(4): 630-5, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17785628

RESUMO

Chronologic age is a strong predictor of adverse outcomes after cardiac surgery. The variability in age-related cardiovascular changes suggests that age may not be the most accurate predictor of adverse perioperative outcomes. Vascular stiffness has emerged as an important surrogate of vascular aging. In a retrospective review, we investigated the value of vascular stiffness, as assessed by brachial pulse pressure (PP) measurements, in predicting stroke in 703 patients (63.4% men and 36.6% women). Patients were followed for 348+/-215 days after cardiac surgery. We used a multivariable logistic model and unadjusted and adjusted Cox proportional-hazard models to assess the probability of stroke and the hazards of stroke over time. Stroke patients had a significantly higher PP (81.2 mm Hg versus 64.5 mm Hg; P=0.0006). In the logistic regression model, PP was an independent predictor of stroke development (unadjusted odds ratio: 1.35; 95% CI: 1.13 to 1.62, for every 10-mm Hg increase in PP; P=0.001). In the unadjusted and adjusted Cox models, PP again predicted stroke (hazard ratio: 1.32; 95% CI: 1.12 to 1.57; hazard ratio: 2.62; 95% CI: 1.49 to 4.60, respectively; P=0.001 for both) for every 10 mm Hg increase in PP. Age, gender, and diabetes were not independent predictors of stroke. Ejection fraction was inversely related to stroke in the adjusted model. Kaplan-Meier estimates and corresponding log-rank test indicated that the probability of stroke-free survival function was significantly lower (P=0.0067) in patients with PP >72 mm Hg versus <72 mm Hg. This analysis suggests that indices of vascular stiffness could be important predictors of neurologic complications.


Assuntos
Pressão Sanguínea , Artéria Braquial/fisiopatologia , Procedimentos Cirúrgicos Cardiovasculares/efeitos adversos , Acidente Vascular Cerebral/etiologia , Idoso , Elasticidade , Feminino , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Estimativa de Kaplan-Meier , Masculino , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Fluxo Sanguíneo Regional/fisiologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA