Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EBioMedicine ; 73: 103646, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689087

RESUMO

BACKGROUND: Senescent cells accumulate in tissues over time as part of the natural ageing process and the removal of senescent cells has shown promise for alleviating many different age-related diseases in mice. Cancer is an age-associated disease and there are numerous mechanisms driving cellular senescence in cancer that can be detrimental to recovery. Thus, it would be beneficial to develop a senolytic that acts not only on ageing cells but also senescent cancer cells to prevent cancer recurrence or progression. METHODS: We used molecular modelling to develop a series of rationally designed peptides to mimic and target FOXO4 disrupting the FOXO4-TP53 interaction and releasing TP53 to induce apoptosis. We then tested these peptides as senolytic agents for the elimination of senescent cells both in cell culture and in vivo. FINDINGS: Here we show that these peptides can act as senolytics for eliminating senescent human cancer cells both in cell culture and in orthotopic mouse models. We then further characterized one peptide, ES2, showing that it disrupts FOXO4-TP53 foci, activates TP53 mediated apoptosis and preferentially binds FOXO4 compared to TP53. Next, we show that intratumoural delivery of ES2 plus a BRAF inhibitor results in a significant increase in apoptosis and a survival advantage in mouse models of melanoma. Finally, we show that repeated systemic delivery of ES2 to older mice results in reduced senescent cell numbers in the liver with minimal toxicity. INTERPRETATION: Taken together, our results reveal that peptides can be generated to specifically target and eliminate FOXO4+ senescent cancer cells, which has implications for eradicating residual disease and as a combination therapy for frontline treatment of cancer. FUNDING: This work was supported by the Cancer Early Detection Advanced Research Center at Oregon Health & Science University.


Assuntos
Antineoplásicos/química , Proteínas de Ciclo Celular/química , Desenho de Fármacos , Fatores de Transcrição Forkhead/química , Modelos Moleculares , Peptídeos/química , Senoterapia/química , Proteína Supressora de Tumor p53/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Masculino , Melanoma , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/farmacologia , Conformação Proteica , Senoterapia/farmacologia , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Methods Mol Biol ; 2171: 273-284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32705649

RESUMO

Recent evidence has shown that many different tissues accumulate mutations even though the tissue is phenotypically normal. Therefore, generating mouse models for visualizing the tissue level effects that happen after oncogenic mutation in a single, isolated cell are critical for understanding tumor initiation and the role of competition in stem cell dynamics. Most mouse models have oncogenic mutations at the level of the entire mouse, the entire tissue, or all cells of a specific type in a tissue. However, these mouse models do not mimic the microenvironmental interactions that occur after an isolated cell acquires an oncogenic mutation because of the large number of mutant cells. We developed a mouse model for sporadic and isolated mutation of target alleles to better address the questions of sporadic cancer and stem cell competition. The following chapter describes methods for utilizing this mouse model and a few examples of the novel findings of using such a model.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Alelos , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Progressão da Doença , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Mutação/genética , Mutação/fisiologia
3.
ACS Cent Sci ; 4(9): 1173-1178, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30276250

RESUMO

The design and optimization of fluorescent molecules has driven the ability to interrogate complex biological events in real time. Notably, most advances in bioimaging fluorophores are based on optimization of core structures that have been known for over a century. Recently, new synthetic methods have resulted in an explosion of nonplanar conjugated macrocyclic molecules with unique optical properties yet to be harnessed in a biological context. Herein we report the synthesis of the first aqueous-soluble carbon nanohoop (i.e., a macrocyclic slice of a carbon nanotube prepared via organic synthesis) and demonstrate its bioimaging capabilities in live cells. Moreover, we illustrate that these scaffolds can be easily modified by well-established "click" chemistry to enable targeted live cell imaging. This work establishes the nanohoops as an exciting new class of macrocyclic fluorophores poised for further development as novel bioimaging tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA