Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123359

RESUMO

Awake surgery contributes to the maximal safe removal of gliomas by localizing brain function. However, the efficacy and safety thereof as a treatment modality for glioblastomas (GBMs) have not yet been established. In this study, we analyzed the outcomes of awake surgery as a treatment modality for GBMs, response to awake mapping, and the factors correlated with mapping failure. Patients with GBMs who had undergone awake surgery at our hospital between March 2010 and February 2023 were included in this study. Those with recurrence were excluded from this study. The clinical characteristics, response to awake mapping, extent of resection (EOR), postoperative complications, progression-free survival (PFS), overall survival (OS), and factors correlated with mapping failure were retrospectively analyzed. Of the 32 participants included in this study, the median age was 57 years old; 17 (53%) were male. Awake mapping was successfully completed in 28 participants (88%). A positive response to mapping and limited resection were observed in 17 (53%) and 13 participants (41%), respectively. The EOR included gross total, subtotal, and partial resections and biopsies in 19 (59%), 8 (25%), 3 (9%), and 2 cases (6%), respectively. Eight (25%) and three participants (9%) presented with neurological deterioration in the acute postoperative period and at 3 months postoperatively, respectively. The median PFS and OS were 15.7 and 36.9 months, respectively. The time from anesthetic induction to extubation was statistically significantly longer in the mapping failure cohort than that in the mapping success cohort. Functional areas could be detected during awake surgery in participants with GBMs. Thus, awake mapping influences intraoperative discernment, contributes to the preservation of brain function, and improves treatment outcomes.

2.
Nat Commun ; 15(1): 269, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191550

RESUMO

Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process. In the internodular compartment, we identify proliferating cerebellar granular neuronal precursor-like malignant cells, along with stromal, vascular, and immune cells. In contrast, the nodular compartment comprises postmitotic, neuronally differentiated malignant cells. Both compartments are connected through an intermediate cell stage resembling actively migrating CGNPs. Notably, we also discover astrocytic-like malignant cells, found in proximity to migrating and differentiated cells at the transition zone between the two compartments. Our study sheds light on the spatial tissue organization and its link to the developmental trajectory, resulting in a more benign tumor phenotype. This integrative approach holds promise to explore intercompartmental interactions in other cancers with varying histology.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Meduloblastoma/genética , Diferenciação Celular , Neoplasias Cerebelares/genética , Progressão da Doença , Técnicas Histológicas
3.
Dev Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38834071

RESUMO

Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA