Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Genes Dev ; 36(11-12): 737-751, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798383

RESUMO

The primary cilium, a signaling organelle projecting from the surface of a cell, controls cellular physiology and behavior. The presence or absence of primary cilia is a distinctive feature of a given tumor type; however, whether and how the primary cilium contributes to tumorigenesis are unknown for most tumors. Medulloblastoma (MB) is a common pediatric brain cancer comprising four groups: SHH, WNT, group 3 (G3), and group 4 (G4). From 111 cases of MB, we show that primary cilia are abundant in SHH and WNT MBs but rare in G3 and G4 MBs. Using WNT and G3 MB mouse models, we show that primary cilia promote WNT MB by facilitating translation of mRNA encoding ß-catenin, a major oncoprotein driving WNT MB, whereas cilium loss promotes G3 MB by disrupting cell cycle control and destabilizing the genome. Our findings reveal tumor type-specific ciliary functions and underlying molecular mechanisms. Moreover, we expand the function of primary cilia to translation control and reveal a molecular mechanism by which cilia regulate cell cycle progression, thereby providing new frameworks for studying cilium function in normal and pathologic conditions.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Neoplasias Encefálicas/patologia , Ciclo Celular/genética , Neoplasias Cerebelares/genética , Cílios/genética , Humanos , Meduloblastoma/genética , Camundongos
2.
Genes Dev ; 34(15-16): 1051-1064, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675324

RESUMO

YAP1 is a transcriptional coactivator and the principal effector of the Hippo signaling pathway, which is causally implicated in human cancer. Several YAP1 gene fusions have been identified in various human cancers and identifying the essential components of this family of gene fusions has significant therapeutic value. Here, we show that the YAP1 gene fusions YAP1-MAMLD1, YAP1-FAM118B, YAP1-TFE3, and YAP1-SS18 are oncogenic in mice. Using reporter assays, RNA-seq, ChIP-seq, and loss-of-function mutations, we can show that all of these YAP1 fusion proteins exert TEAD-dependent YAP activity, while some also exert activity of the C'-terminal fusion partner. The YAP activity of the different YAP1 fusions is resistant to negative Hippo pathway regulation due to constitutive nuclear localization and resistance to degradation of the YAP1 fusion proteins. Genetic disruption of the TEAD-binding domain of these oncogenic YAP1 fusions is sufficient to inhibit tumor formation in vivo, while pharmacological inhibition of the YAP1-TEAD interaction inhibits the growth of YAP1 fusion-expressing cell lines in vitro. These results highlight TEAD-dependent YAP activity found in these gene fusions as critical for oncogenesis and implicate these YAP functions as potential therapeutic targets in YAP1 fusion-positive tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Sinais de Localização Nuclear , Motivos de Nucleotídeos , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Genes Dev ; 34(17-18): 1161-1176, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820036

RESUMO

Medulloblastoma is a malignant childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH) subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs), and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional corepressor BCOR are recurrent and enriched in SHH medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9-10 ) in GNPs during development. This mutation leads to reduced expression of C-terminally truncated BCOR (BCORΔE9-10). While BcorΔE9-10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9-10 combined with loss of the SHH receptor gene Ptch1 resulted in fully penetrant medulloblastomas. In Ptch1+/- ;BcorΔE9-10 tumors, the growth factor gene Igf2 was aberrantly up-regulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/- GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/- ;BcorΔE9-10 tumors. Overall, our data suggests that BCOR-PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.


Assuntos
Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/genética , Animais , Carcinogênese/genética , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Humanos , Camundongos , Mutação , Receptor Patched-1/genética , Proteínas do Grupo Polycomb/genética , Proteínas Repressoras/metabolismo , Deleção de Sequência
4.
BMC Neurol ; 23(1): 9, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609238

RESUMO

BACKGROUND: Glioblastoma (GBM) infrequently recurs in the infratentorial region. Such Infratentorial recurrence (ITR) has some clinically unique characteristics, such as presenting unspecific symptoms and providing patients a chance to receive additional radiotherapy. However, the clinical significances of ITR are not well studied. METHODS: We reviewed newly diagnosed isocitrate dehydrogenase (IDH)-wildtype GBM patients treated at our institution between October 2008 and December 2018. ITR was defined as any type of recurrence in GBM, including dissemination or distant recurrence, which primarily developed in the supratentorial region and recurred in the infratentorial region. RESULTS: Of 134 patients with newly diagnosed IDH-wildtype GBM, six (4.5%) were classified as having ITR. There was no significant difference in median duration from the first surgery to ITR development between patients with and without ITR (12.2 vs. 10.2 months, P = 0.65). The primary symptoms of ITR were gait disturbance (100%, n = 6), dizziness (50.0%, n = 3), nausea (33.3%, n = 2), and cerebellar mutism (16.7%, n = 1). In four cases (66.7%), symptoms were presented before ITR development. All patients received additional treatments for ITR. The median post-recurrence survival (PRS) of ITR patients was significantly shorter than that of general GBM patients (5.5 vs. 9.1 months, P = 0.023). However, chemoradiotherapy contributed to palliating symptoms such as nausea. CONCLUSIONS: ITR is a severe recurrence type in GBM patients. Its symptoms are neurologically unspecific and can be overlooked or misdiagnosed as side effects of treatments. Carefully checking the infratentorial region, especially around the fourth ventricle, is essential during the GBM patient follow-up.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Neoplasias Encefálicas/diagnóstico , Prognóstico , Estudos Retrospectivos
5.
Jpn J Clin Oncol ; 53(11): 1027-1033, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37534529

RESUMO

BACKGROUND: The neurological status of glioblastoma patients rapidly deteriorates. We recently demonstrated that early diagnosis and surgery within 3 weeks from the initial symptoms are associated with improved survival. While glioblastoma is a semi-urgent disease, the prehospital behaviors and clinical outcomes of glioblastoma patients are poorly understood. We aimed to disclose how prehospital patient behavior influences the clinical outcomes of glioblastoma patients. METHODS: Isocitrate dehydrogenase-wildtype glioblastoma patients treated at our institution between January 2010 and December 2019 were reviewed. Patients were divided into two groups, neurosurgeon and non-neurosurgeon groups, based on the primary doctor whom patients sought for an initial evaluation. Patient demographics and prognoses were examined. RESULTS: Of 170 patients, 109 and 61 were classified into the neurosurgeon and non-neurosurgeon groups, respectively. The median age of neurosurgeon group was significantly younger than the non-neurosurgeon group (61 vs. 69 years old, P = 0.019) and in better performance status (preoperative Karnofsky performance status scores $\ge$80: 72.5 vs. 55.7%, P = 0.027). The neurosurgeon group exhibited a significantly shorter duration from the first hospital visit to the first surgery than the non-neurosurgeon group (18 vs. 29 days, P < 0.0001). Furthermore, the overall survival of the neurosurgeon group was significantly more prolonged than that of the non-neurosurgeon group (22.9 vs. 14.0 months, P = 0.038). CONCLUSION: Seeking an initial evaluation by a neurosurgeon was potentially associated with prolonged survival in glioblastoma patients. A short duration from the first hospital visit to the first surgery is essential in enhancing glioblastoma patient prognosis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Idoso , Glioblastoma/cirurgia , Glioblastoma/tratamento farmacológico , Neurocirurgiões , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/tratamento farmacológico , Estudos Retrospectivos , Prognóstico
6.
Cancer Sci ; 113(2): 697-708, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839570

RESUMO

Meningioma is the most common intracranial tumor, with generally favorable patient prognosis. However, patients with malignant meningioma typically experience recurrence, undergo multiple surgical resections, and ultimately have a poor prognosis. Thus far, effective chemotherapy for malignant meningiomas has not been established. We recently reported the efficacy of eribulin (Halaven) for glioblastoma with a telomerase reverse transcriptase (TERT) promoter mutation. This study investigated the anti-tumor effect of eribulin against TERT promoter mutation-harboring human malignant meningioma cell lines in vitro and in vivo. Two meningioma cell lines, IOMM-Lee and HKBMM, were used in this study. The strong inhibition of cell proliferation by eribulin via cell cycle arrest was demonstrated through viability assay and flow cytometry. Apoptotic cell death in malignant meningioma cell lines was determined through vital dye assay and immunoblotting. Moreover, a wound healing assay revealed the suppression of tumor cell migration after eribulin exposure. Intraperitoneal administration of eribulin significantly prolonged the survival of orthotopic xenograft mouse models of both malignant meningioma cell lines implanted in the subdural space (P < .0001). Immunohistochemistry confirmed apoptosis in brain tumor tissue treated with eribulin. Overall, these results suggest that eribulin is a potential therapeutic agent for malignant meningiomas.


Assuntos
Antineoplásicos/uso terapêutico , Furanos/uso terapêutico , Cetonas/uso terapêutico , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Furanos/farmacologia , Humanos , Estimativa de Kaplan-Meier , Cetonas/farmacologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/mortalidade , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/mortalidade , Meningioma/patologia , Camundongos , Mutação , Regiões Promotoras Genéticas , Telomerase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Neurooncol ; 156(3): 551-557, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34985720

RESUMO

OBJECTIVE: With an increase in the number of imaging examinations and the development of imaging technology, a small number of glioblastomas (GBMs) are identified by incidental radiological images. These incidentally discovered glioblastomas (iGBMs) are rare, and their clinical features are not well understood. Here, we investigated the clinical characteristics and outcomes of iGBM. METHODS: Data of newly diagnosed iGBM patients who were treated at our institution between August 2005 and October 2019 were reviewed. An iGBM was defined as a GBM without a focal sign, discovered on radiological images obtained for reasons unrelated to the tumor. Kaplan-Meier analysis was performed to calculate progression-free survival (PFS) and overall survival (OS). RESULTS: Of 315 patients with newly diagnosed GBM, four (1.3%) were classified as having iGBM. Health screening was the most common reason for tumor discovery (75.0%). The preoperative Karnofsky performance status score was 100 in three patients. Tumors were found on the right side in three cases. The mean volume of preoperative enhanced tumor lesion was 16.8 cm3. The median duration from confirmation of an enhanced lesion to surgery was 13.5 days. In all cases, either total (100%) or subtotal (95-99%) resections were achieved. The median PFS and OS were 10.5 and 20.0 months, respectively. CONCLUSIONS: The iGBMs were often small and in the right non-eloquent area, and the patients had good performance status. We found that timely therapeutic intervention provided iGBM patients with favorable outcomes. This report suggests that early detection of GBM may lead to a better prognosis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Achados Incidentais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Radiografia , Resultado do Tratamento
8.
J Neurooncol ; 157(3): 561-571, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35397757

RESUMO

PURPOSE: Although the usefulness of O6-methylguanine DNA methyltransferase (MGMT) promoter methylation analysis for predicting response to chemoradiotherapy and the prognosis of patients with glioblastoma has been widely reported, there is still no consensus regarding how to define MGMT promoter methylation percentage (MGMTpm%) cutoffs by pyrosequencing method. The aim of this study was to determine the optimal cutoff value of MGMT promoter methylation status using volumetric analysis focused on the tumor volume ratio (TVR) measured by MRI. METHODS: This retrospective study included newly diagnosed IDH wild-type glioblastoma patients with residual tumor after surgery, followed by local radiotherapy with temozolomide. TVR was defined as the tumor volume at 6 months after the initial chemoradiotherapy administration divided by the tumor volume before the start of therapy. The mean MGMTpm% of 16 CpG islands (74-89) was analyzed using pyrosequencing. We statistically analyzed the correlation between MGMTpm%, TVR, and change in Karnofsky performance status. RESULTS: The study included 44 patients with residual tumors. Thirteen (92.9%) of 14 patients with MGMTpm% ≥ 23.9% showed 50% or more volumetric response, leading to prolonged survival, and 17 (70.8%) of 24 patients with MGMTpm% < 8.2% had progressive disease after initial chemoradiotherapy administration. Three (50.0%) of six patients with MGMTpm% 8.2% to < 23.9% had stable disease or partial response. CONCLUSION: Evaluation of MGMTpm% by pyrosequencing is important in predicting the volumetric response and prognosis of glioblastoma patients with residual tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasia Residual , O(6)-Metilguanina-DNA Metiltransferase/genética , Prognóstico , Estudos Retrospectivos , Proteínas Supressoras de Tumor/genética
9.
Nature ; 530(7588): 57-62, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26814967

RESUMO

Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Meduloblastoma/classificação , Meduloblastoma/patologia , Fatores de Transcrição/metabolismo , Animais , Neoplasias Cerebelares/classificação , Feminino , Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Genes Reporter/genética , Humanos , Masculino , Meduloblastoma/genética , Camundongos , Reprodutibilidade dos Testes , Peixe-Zebra/genética
10.
Cancer Sci ; 112(8): 2948-2957, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34050694

RESUMO

Medulloblastoma is the most common malignant cerebellar tumor in children. Recent technological advances in multilayered 'omics data analysis have revealed 4 molecular subgroups of medulloblastoma (Wingless/int, Sonic hedgehog, Group3, and Group4). (Epi)genomic and transcriptomic profiling on human primary medulloblastomas has shown distinct oncogenic drivers and cellular origin(s) across the subgroups. Despite tremendous efforts to identify the molecular signals driving tumorigenesis, few of the identified targets were druggable; therefore, a further understanding of the etiology of tumors is required to establish effective molecular-targeted therapies. Chromatin regulators are frequently mutated in medulloblastoma, prompting us to investigate epigenetic changes and the accompanying activation of oncogenic signaling during tumorigenesis. For this purpose, we have used germline and non-germline genetically engineered mice to model human medulloblastoma and to conduct useful, molecularly targeted, preclinical studies. This review discusses the biological implications of chromatin regulator mutations during medulloblastoma pathogenesis, based on recent in vivo animal studies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Cerebelares/patologia , Epigênese Genética , Meduloblastoma/patologia , Animais , Neoplasias Cerebelares/genética , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Engenharia Genética , Humanos , Meduloblastoma/genética , Camundongos , Mutação
11.
Cancer Sci ; 112(6): 2442-2453, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33728771

RESUMO

Glioblastoma (GBM) is the most common, but extremely malignant, brain tumor; thus, the development of novel therapeutic strategies for GBMs is imperative. Many tyrosine kinase inhibitors (TKIs) have been approved for various cancers, yet none has demonstrated clinical benefit against GBM. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that is confirmed only during the embryonic development period in humans. In addition, various ALK gene alterations are known to act as powerful oncogenes and therapeutic targets in various tumors. The antitumor activity of various TKIs was tested against three human GBM cell lines (U87MG, LN229, and GSC23), which expressed substantially low ALK levels; second-generation ALK inhibitors, alectinib and ceritinib, effectively induced GBM cell death. In addition, treatment with either alectinib or ceritinib modulated the activation of various molecules downstream of RTK signaling and induced caspase-dependent/-independent cell death mainly by inhibiting signal transducer and activator of transcription 3 activation in human GBM cells. In addition, alectinib and ceritinib also showed antitumor activity against a U87MG cell line with acquired temozolomide resistance. Finally, oral administration of alectinib and ceritinib prolonged the survival of mice harboring intracerebral GBM xenografts compared with controls. These results suggested that treatment with the second-generation ALK inhibitors, alectinib and ceritinib, might serve as a potent therapeutic strategy against GBM.


Assuntos
Quinase do Linfoma Anaplásico/genética , Neoplasias Encefálicas/tratamento farmacológico , Carbazóis/administração & dosagem , Glioblastoma/tratamento farmacológico , Piperidinas/administração & dosagem , Pirimidinas/administração & dosagem , Fator de Transcrição STAT3/metabolismo , Sulfonas/administração & dosagem , Administração Oral , Quinase do Linfoma Anaplásico/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carbazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Temozolomida/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Sci ; 112(11): 4736-4747, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536314

RESUMO

Glioblastomas (GBM) often acquire resistance against temozolomide (TMZ) after continuous treatment and recur as TMZ-resistant GBM (TMZ-R-GBM). Lomustine (CCNU) and nimustine (ACNU), which were previously used as standard therapeutic agents against GBM before TMZ, have occasionally been used for the salvage therapy of TMZ-R-GBM; however, their efficacy has not yet been thoroughly examined. Therefore, we investigated the antitumor effects of CCNU and ACNU against TMZ-R-GBM. As a model of TMZ-R-GBM, TMZ resistant clones of human GBM cell lines (U87, U251MG, and U343MG) were established (TMZ-R-cells) by the culture of each GBM cells under continuous TMZ treatment, and the antitumor effects of TMZ, CCNU, or ACNU against these cells were analyzed in vitro and in vivo. As a result, although growth arrest and apoptosis were triggered in all TMZ-R-cells after the administration of each drug, the antitumor effects of TMZ against TMZ-R-cells were significantly reduced compared to those of parental cells, whereas CCNU and ACNU demonstrated efficient antitumor effects on TMZ-R-cells as well as parental cells. It was also demonstrated that TMZ resistance of TMZ-R-cells was regulated at the initiation of DNA damage response. Furthermore, survival in mice was significantly prolonged by systemic treatment with CCNU or ACNU but not TMZ after implantation of TMZ-R-cells. These findings suggest that CCNU or ACNU may serve as a therapeutic agent in salvage treatment against TMZ-R-GBM.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Lomustina/uso terapêutico , Nimustina/uso terapêutico , Temozolomida/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/metabolismo , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Glioblastoma/metabolismo , Histonas/metabolismo , Humanos , Injeções Intraperitoneais , Lomustina/administração & dosagem , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia/tratamento farmacológico , Nimustina/administração & dosagem , Terapia de Salvação/métodos , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
EMBO J ; 35(20): 2192-2212, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27625374

RESUMO

SOX9 is a master transcription factor that regulates development and stem cell programs. However, its potential oncogenic activity and regulatory mechanisms that control SOX9 protein stability are poorly understood. Here, we show that SOX9 is a substrate of FBW7, a tumor suppressor, and a SCF (SKP1/CUL1/F-box)-type ubiquitin ligase. FBW7 recognizes a conserved degron surrounding threonine 236 (T236) in SOX9 that is phosphorylated by GSK3 kinase and consequently degraded by SCFFBW7α Failure to degrade SOX9 promotes migration, metastasis, and treatment resistance in medulloblastoma, one of the most common childhood brain tumors. FBW7 is either mutated or downregulated in medulloblastoma, and in cases where FBW7 mRNA levels are low, SOX9 protein is significantly elevated and this phenotype is associated with metastasis at diagnosis and poor patient outcome. Transcriptional profiling of medulloblastoma cells expressing a degradation-resistant SOX9 mutant reveals activation of pro-metastatic genes and genes linked to cisplatin resistance. Finally, we show that pharmacological inhibition of PI3K/AKT/mTOR pathway activity destabilizes SOX9 in a GSK3/FBW7-dependent manner, rendering medulloblastoma cells sensitive to cytostatic treatment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Meduloblastoma/metabolismo , Fatores de Transcrição SOX9/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Compostos de Anilina/farmacologia , Animais , Benzamidas , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Cromonas/farmacologia , Cisplatino/farmacologia , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Camundongos Nus , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Fatores de Transcrição SOX9/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
14.
Nature ; 511(7510): 428-34, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043047

RESUMO

Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.


Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Variação Estrutural do Genoma/genética , Meduloblastoma/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Criança , Cromossomos Humanos Par 9/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Meduloblastoma/classificação , Meduloblastoma/patologia , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
15.
Acta Neuropathol ; 138(6): 1075-1089, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31414211

RESUMO

Spinal ependymal tumors form a histologically and molecularly heterogeneous group of tumors with generally good prognosis. However, their treatment can be challenging if infiltration of the spinal cord or dissemination throughout the central nervous system (CNS) occurs and, in these cases, clinical outcome remains poor. Here, we describe a new and relatively rare subgroup of spinal ependymal tumors identified using DNA methylation profiling that is distinct from other molecular subgroups of ependymoma. Copy number variation plots derived from DNA methylation arrays showed MYCN amplification as a characteristic genetic alteration in all cases of our cohort (n = 13), which was subsequently validated using fluorescence in situ hybridization. The histological diagnosis was anaplastic ependymoma (WHO Grade III) in ten cases and classic ependymoma (WHO Grade II) in three cases. Histological re-evaluation in five primary tumors and seven relapses showed characteristic histological features of ependymoma, namely pseudorosettes, GFAP- and EMA positivity. Electron microscopy revealed cilia, complex intercellular junctions and intermediate filaments in a representative sample. Taking these findings into account, we suggest to designate this molecular subgroup spinal ependymoma with MYCN amplification, SP-EPN-MYCN. SP-EPN-MYCN tumors showed distinct growth patterns with intradural, extramedullary localization mostly within the thoracic and cervical spine, diffuse leptomeningeal spread throughout the whole CNS and infiltrative invasion of the spinal cord. Dissemination was observed in 100% of cases. Despite high-intensity treatment, SP-EPN-MYCN showed significantly worse median progression free survival (PFS) (17 months) and median overall survival (OS) (87 months) than all other previously described molecular spinal ependymoma subgroups. OS and PFS were similar to supratentorial ependymoma with RELA-fusion (ST-EPN-RELA) and posterior fossa ependymoma A (PF-EPN-A), further highlighting the aggressiveness of this distinct new subgroup. We, therefore, propose to establish SP-EPN-MYCN as a new molecular subgroup in ependymoma and advocate for testing newly diagnosed spinal ependymal tumors for MYCN amplification.


Assuntos
Ependimoma/genética , Ependimoma/patologia , Proteína Proto-Oncogênica N-Myc/genética , Neoplasias da Coluna Vertebral/genética , Neoplasias da Coluna Vertebral/patologia , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Mutação/genética
16.
J Neurooncol ; 141(1): 205-211, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30565028

RESUMO

INTRODUCTION: Chromosomes 1p/19q co-deletion is a robust molecular marker for the diagnosis of oligodendroglial tumors, and has been included in the 2016 WHO modified classification. Although treatment for oligodendroglioma is controversial, upfront chemotherapy is regarded as one of the treatment option for low-grade tumor. We have treated all the 1p/19q co-deleted oligodendrogliomas, both grades II and III, with upfront chemotherapy without conventional radiotherapy for 20 years. The clinical experience from this trial may be suggestive for understanding of the biological features of oligodendroglioma with 1p/19q co-deletion toward precision medicine. METHODS: This is a long-term retrospective data of the non-selected patients with 1p/19q co-deleted oligodendrogliomas uniformly treated with up-front chemotherapy. Seventy consecutive patients (48 with grade II and 22 with grade III tumors) were included. RESULTS: The median follow-up period was 13 years. The 5-, 10-, and 15-year progression-free survival (PFS) rates were 85.7%, 54.8%, and 31.5%, respectively, and the median PFS was 146 months. In most cases, tumor recurrence was remained local and could be controlled by salvage surgery and/or chemotherapy. The 5-, 10-, and 15-year overall survival (OS) rates were 96.8%, 88.7%, and 80.0%, respectively, and the median OS was not reached. These survival data compared favorably with previous large clinical studies employing radiotherapy. Tumor grades based on World Health Organization classification, extent of surgery, and age affected neither PFS nor OS. Most patients were able to return to their premorbid social life. CONCLUSIONS: The long-term results drawn from 20-years of single institution experience show that the patients with 1p/19q co-deleted oligodendrogliomas can be successfully treated with up-front chemotherapy alone without compromising OS.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Deleção Cromossômica , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 1/genética , Oligodendroglioma/tratamento farmacológico , Oligodendroglioma/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Oligodendroglioma/genética , Oligodendroglioma/patologia , Intervalo Livre de Progressão , Estudos Retrospectivos , Taxa de Sobrevida
17.
Development ; 142(2): 375-84, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25519244

RESUMO

The calcium ion regulates many aspects of neuronal migration, which is an indispensable process in the development of the nervous system. Calmodulin (CaM) is a multifunctional calcium ion sensor that transduces much of the signal. To better understand the role of Ca(2+)-CaM in neuronal migration, we investigated mouse precerebellar neurons (PCNs), which undergo stereotyped, long-distance migration to reach their final position in the developing hindbrain. In mammals, CaM is encoded by three non-allelic CaM (Calm) genes (Calm1, Calm2 and Calm3), which produce an identical protein with no amino acid substitutions. We found that these CaM genes are expressed in migrating PCNs. When the expression of CaM from this multigene family was inhibited by RNAi-mediated acute knockdown, inhibition of Calm1 but not the other two genes caused defective PCN migration. Many PCNs treated with Calm1 shRNA failed to complete their circumferential tangential migration and thus failed to reach their prospective target position. Those that did reach the target position failed to invade the depth of the hindbrain through the required radial migration. Overall, our results suggest the participation of CaM in both the tangential and radial migration of PCNs.


Assuntos
Calmodulina/metabolismo , Movimento Celular/fisiologia , Cerebelo/embriologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Primers do DNA/genética , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Plasmídeos/genética , Interferência de RNA
18.
Nature ; 488(7409): 43-8, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22722829

RESUMO

Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.


Assuntos
Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/genética , Meduloblastoma/classificação , Meduloblastoma/genética , Mutação/genética , Animais , Antígenos CD , Proteína de Ligação a CREB/genética , Caderinas/genética , Proteínas Cdh1 , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Linhagem da Célula , Neoplasias Cerebelares/patologia , Criança , Classe I de Fosfatidilinositol 3-Quinases , RNA Helicases DEAD-box/genética , Variações do Número de Cópias de DNA , DNA Helicases/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Genoma Humano/genética , Genômica , Proteínas Hedgehog/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Meduloblastoma/patologia , Metilação , Camundongos , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/genética , Fatores de Transcrição/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
19.
Nature ; 488(7409): 49-56, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22832581

RESUMO

Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-ß signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.


Assuntos
Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/genética , Genoma Humano/genética , Variação Estrutural do Genoma/genética , Meduloblastoma/classificação , Meduloblastoma/genética , Proteínas de Transporte/genética , Neoplasias Cerebelares/metabolismo , Criança , Variações do Número de Cópias de DNA/genética , Duplicação Gênica/genética , Genes myc/genética , Genômica , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Fusão Oncogênica/genética , Proteínas/genética , RNA Longo não Codificante , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Translocação Genética/genética
20.
J Stroke Cerebrovasc Dis ; 26(9): e186-e188, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28669652

RESUMO

Untreated infective endocarditis (IE) often produces infective emboli in major cerebral arteries. We describe a case of middle cerebral artery occlusion due to IE, which caused severe vasospasm and reocclusion after mechanical thrombectomy (MT). We present the pathologic findings of the occluded middle cerebral artery and investigate the precautions to be taken while performing MT due to IE. A 72-year-old man with atrial fibrillation treated with dabigatran presented with right hemiparesis and aphasia. A diffusion-weighted image showed a high-intensity area in the left temporoparietal junction, and magnetic resonance angiography revealed a left M2 occlusion. Because of an elevated activated partial thromboplastin time, the thrombolytic therapy was contraindicated; instead, MT was performed. Just after the withdrawal of a stent retriever, the left M2 segment showed severe vasospasm. The next day, the left M2 segment reoccluded. Transthoracic echocardiogram and blood culture findings revealed IE. On the ninth day, the patient died. According to the autopsy report, the cause of death was pulmonary embolism. Pathologic analysis of the occluded M2 segment revealed fibrin thrombi containing vast amounts of neutrophils and invasion of neutrophils into the internal elastic lamina. Severe vasospasm was thought to have occurred because the vascular injury caused by the stent retriever in the vessel had a marked inflammation background. Our findings suggest that devices that are less invasive to the vascular wall are required for performing MT due to IE. The Penumbra aspiration system is thought to be a suitable device.


Assuntos
Endocardite Bacteriana/complicações , Infarto da Artéria Cerebral Média/terapia , Trombectomia/efeitos adversos , Vasoespasmo Intracraniano/etiologia , Idoso , Autopsia , Angiografia Cerebral/métodos , Imagem de Difusão por Ressonância Magnética , Endocardite Bacteriana/diagnóstico , Evolução Fatal , Humanos , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/etiologia , Angiografia por Ressonância Magnética , Masculino , Recidiva , Índice de Gravidade de Doença , Trombectomia/instrumentação , Resultado do Tratamento , Vasoespasmo Intracraniano/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA