Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(1): e0142823, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38099657

RESUMO

Wastewater-based epidemiology (WBE) expanded rapidly in response to the COVID-19 pandemic. As the public health emergency has ended, researchers and practitioners are looking to shift the focus of existing wastewater surveillance programs to other targets, including bacteria. Bacterial targets may pose some unique challenges for WBE applications. To explore the current state of the field, the National Science Foundation-funded Research Coordination Network (RCN) on Wastewater Based Epidemiology for SARS-CoV-2 and Emerging Public Health Threats held a workshop in April 2023 to discuss the challenges and needs for wastewater bacterial surveillance. The targets and methods used in existing programs were diverse, with twelve different targets and nine different methods listed. Discussions during the workshop highlighted the challenges in adapting existing programs and identified research gaps in four key areas: choosing new targets, relating bacterial wastewater data to human disease incidence and prevalence, developing methods, and normalizing results. To help with these challenges and research gaps, the authors identified steps the larger community can take to improve bacteria wastewater surveillance. This includes developing data reporting standards and method optimization and validation for bacterial programs. Additionally, more work is needed to understand shedding patterns for potential bacterial targets to better relate wastewater data to human infections. Wastewater surveillance for bacteria can help provide insight into the underlying prevalence in communities, but much work is needed to establish these methods.IMPORTANCEWastewater surveillance was a useful tool to elucidate the burden and spread of SARS-CoV-2 during the pandemic. Public health officials and researchers are interested in expanding these surveillance programs to include bacterial targets, but many questions remain. The NSF-funded Research Coordination Network for Wastewater Surveillance of SARS-CoV-2 and Emerging Public Health Threats held a workshop to identify barriers and research gaps to implementing bacterial wastewater surveillance programs.


Assuntos
Objetivos , Pandemias , Humanos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Bactérias , SARS-CoV-2
2.
Proc Biol Sci ; 290(1997): 20230124, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122256

RESUMO

To attain a faculty position, postdoctoral fellows submit job applications that require considerable time and effort to produce. Although mentors and colleagues review these applications, postdocs rarely receive iterative feedback from reviewers with the breadth of expertise typically found on an academic search committee. To address this gap, we describe an international peer-reviewing programme for postdocs across disciplines to receive reciprocal, iterative feedback on faculty applications. A participant survey revealed that nearly all participants would recommend the programme to others. Furthermore, our programme was more likely to attract postdocs who struggled to find mentoring, possibly because of their identity as a woman or member of an underrepresented population in STEM or because they changed fields. Between 2018 and 2021, our programme provided nearly 150 early career academics with a diverse and supportive community of peer mentors during the difficult search for a faculty position and continues to do so today. As the transition from postdoc to faculty represents the largest 'leak' in the academic pipeline, implementation of similar programmes by universities or professional societies would provide psycho-social support necessary to prevent attrition of individuals from underrepresented populations as well as increase the chances of success for early career academics in their search for independence.


Assuntos
Tutoria , Feminino , Humanos , Projetos Piloto , Mentores , Docentes , Grupo Associado
3.
Environ Sci Technol ; 57(35): 12969-12980, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37611169

RESUMO

Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of WBT measured biomarkers for research activities and for the pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process, introducing the potential for adverse outcomes for WBT professionals and community members. To address this deficiency, an interdisciplinary workshop developed a framework for a structured ethical review of WBT. The workshop employed a consensus approach to create this framework as a set of 11 questions derived from primarily public health guidance. This study retrospectively applied these questions to SARS-CoV-2 monitoring programs covering the emergent phase of the pandemic (3/2020-2/2022 (n = 53)). Of note, 43% of answers highlight a lack of reported information to assess. Therefore, a systematic framework would at a minimum structure the communication of ethical considerations for applications of WBT. Consistent application of an ethical review will also assist in developing a practice of updating approaches and techniques to reflect the concerns held by both those practicing and those being monitored by WBT supported programs.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Saúde Pública , Estudos Retrospectivos , SARS-CoV-2 , Águas Residuárias , Revisão Ética
4.
Emerg Infect Dis ; 28(9): 1906-1908, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35840124

RESUMO

SARS-CoV-2 variant proportions in a population can be estimated through genomic sequencing of clinical specimens or wastewater samples. We demonstrate strong pairwise correlation between statewide variant estimates in Oregon, USA, derived from both methods (correlation coefficient 0.97). Our results provide crucial evidence of the effectiveness of community-level genomic surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genômica , Humanos , Oregon/epidemiologia , SARS-CoV-2/genética , Águas Residuárias
5.
Emerg Infect Dis ; 28(6): 1101-1109, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452383

RESUMO

Genomic surveillance has emerged as a critical monitoring tool during the SARS-CoV-2 pandemic. Wastewater surveillance has the potential to identify and track SARS-CoV-2 variants in the community, including emerging variants. We demonstrate the novel use of multilocus sequence typing to identify SARS-CoV-2 variants in wastewater. Using this technique, we observed the emergence of the B.1.351 (Beta) variant in Linn County, Oregon, USA, in wastewater 12 days before this variant was identified in individual clinical specimens. During the study period, we identified 42 B.1.351 clinical specimens that clustered into 3 phylogenetic clades. Eighteen of the 19 clinical specimens and all wastewater B.1.351 specimens from Linn County clustered into clade 1. Our results provide further evidence of the reliability of wastewater surveillance to report localized SARS-CoV-2 sequence information.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Oregon/epidemiologia , Filogenia , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
6.
Environ Sci Technol ; 53(24): 14548-14558, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31693350

RESUMO

Biostimulation to promote reductive dechlorination is widely practiced, but the value of adding an exogenous nitrogen (N) source (e.g., NH4+) during treatment is unclear. This study investigates the effect of NH4+ availability on organohalide-respiring Dehalococcoides mccartyi (Dhc) growth and reductive dechlorination in enrichment cultures derived from groundwater (PW4) and river sediment (TC) impacted with chlorinated ethenes. In PW4 cultures, the addition of NH4+ increased cis-1,2-dichloroethene (cDCE)-to-ethene dechlorination rates about 5-fold (20.6 ± 1.6 versus 3.8 ± 0.5 µM Cl- d-1), and the total number of Dhc 16S rRNA gene copies were about 43-fold higher in incubations with NH4+ ((1.8 ± 0.9) × 108 mL-1) compared to incubations without NH4+ ((4.1 ± 0.8) × 107 mL-1). In TC cultures, NH4+ also stimulated cDCE-to-ethene dechlorination and Dhc growth. Quantitative polymerase chain reaction (qPCR) revealed that Cornell-type Dhc capable of N2 fixation dominated PW4 cultures without NH4+, but their relative abundance decreased in cultures with NH4+ amendment (i.e., 99 versus 54% of total Dhc). Pinellas-type Dhc incapable of N2 fixation were responsible for cDCE dechlorination in TC cultures, and diazotrophic community members met their fixed N requirement in the medium without NH4+. Responses to NH4+ were apparent at the community level, and N2-fixing bacterial populations increased in incubations without NH4+. Quantitative assessment of Dhc nitrogenase genes, transcripts, and proteomics data linked Cornell-type Dhc nifD and nifK expression with fixed N limitation. NH4+ additions also demonstrated positive effects on Dhc in situ dechlorination activity in the vicinity of well PW4. These findings demonstrate that biostimulation with NH4+ can enhance Dhc reductive dechlorination rates; however, a "do nothing" approach that relies on indigenous diazotrophs can achieve similar dechlorination end points and avoids the potential for stalled dechlorination due to inhibitory levels of NH4+ or transformation products (i.e., nitrous oxide).


Assuntos
Chloroflexi , Cloreto de Vinil , Biodegradação Ambiental , Dehalococcoides , Etilenos , Nitrogênio , RNA Ribossômico 16S
8.
Water Environ Res ; 87(2): 145-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25790517

RESUMO

Sludges originating from water resource recovery facilities act as a sink for various contaminants including polychlorinated biphenyls (PCBs). Investigation of such pollutants provides detailed information about the pollutant burden of the region from which incoming wastewater is derived. However, the current extraction methods for PCBs in wastewater and sludge are both time- and solvent-consuming. Therefore, the purposes of this study were to develop a practical PCB extraction procedure and to monitor PCB levels in sludge originating from an urban water resource recovery facility (WRRF). Procedure applicability was shown by comparing the extraction results of certified reference materials with that of Soxhlet and by checking surrogate recovery. Diethyl ether, hexane, and hexane:acetone mixture were evaluated as the PCB extraction solvent; hexane was the most efficient solvent with the recovery results (89 to 102%) in an acceptable range of 70 to 130%. The PCB concentrations of the WRRF sludges were in the range of 3.6 ± 0.3 to 64.4 ± 9.3 µg/kg dry matter.


Assuntos
Fracionamento Químico/métodos , Bifenilos Policlorados/isolamento & purificação , Esgotos/química , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Estações do Ano , Turquia , Urbanização
9.
Sci Total Environ ; : 174219, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917908

RESUMO

Cryptosporidium poses significant public health risks as a cause of waterborne disease worldwide. Clinical surveillance of cryptosporidiosis is largely underreported due to the asymptomatic and mildly symptomatic infections, clinical misdiagnoses, and barriers to access testing. Wastewater surveillance overcomes these limitations and could serve as an effective tool for identifying cryptosporidiosis at the population level. Despite its potential, the lack of standardized wastewater surveillance methods for Cryptosporidium spp. challenges implementation design and the comparability between studies. Thus, this study compared and contrasted Cryptosporidium wastewater surveillance methods for concentrating wastewater oocysts, extracting oocyst DNA, and detecting Cryptosporidium genetic markers. The evaluated concentration methods included electronegative membrane filtration, Envirocheck HV capsule filtration, centrifugation, and Nanotrap Microbiome Particles, with and without additional immunomagnetic separation purification (except for the Nanotrap Microbiome Particles). Oocyst DNA extraction by either the DNeasy Powersoil Pro kit and the QIAamp DNA Mini kit were evaluated and the impact of bead beating and freeze-thaw pretreatments on DNA recoveries was assessed. Genetic detection via qPCR assays targeting either the Cryptosporidium 18S rRNA gene or the Cryptosporidium oocyst wall protein gene were tested. Oocyst recovery percentages were highest for centrifugation (39-77 %), followed by the Nanotrap Microbiome Particles (24 %), electronegative filtration with a PBST elution (22 %), and Envirocheck HV capsule filtration (13 %). Immunomagnetic separation purification was found to be unsuitable due to interference from the wastewater matrix. Bead-beating pretreatment enhanced DNA recoveries from both the DNeasy Powersoil Pro kit (314 gc/µL DNA) and the QIAamp DNA Mini kit (238 gc/µL DNA). In contrast, freeze-thaw pretreatment reduced DNA recoveries to under 92 gc/µL DNA, likely through DNA degradation. Finally, while both qPCR assays were specific to Cryptosporidium spp., the 18S rRNA assay had a 5-fold lower detection limit and could detect a wider range of Cryptosporidium spp. than the Cryptosporidium oocyst wall protein assay.

10.
Chemosphere ; 336: 139188, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302503

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds that can be captured and accumulate in the bioretention cell media, which may lead to secondary pollution and ecological risks. This research aimed to understand the spatial distribution of 16 priority PAHs in bioretention media, identify their sources, evaluate their ecological impact, and assess the potential for their aerobic biodegradation. The highest total PAH concentration (25.5 ± 1.7 µg/g) was observed 1.83 m from the inlet and 10-15 cm deep. The individual PAHs with the highest concentrations were benzo [g,h,i]perylene in February (1.8 ± 0.8 µg/g) and pyrene in June (1.8 ± 0.8 µg/g). Data indicated that primary sources of PAHs were fossil fuel combustion and petroleum. The ecological impact and toxicity of the media were assessed by probable effect concentrations (PECs) and benzo [a]pyrene total toxicity equivalent (BaP-TEQ). The results showed that the concentrations of pyrene and chrysene exceeded the PECs, and the average BaP-TEQ was 1.64 µg/g, primarily caused by benzo [a]pyrene. The functional gene (C12O) of PAH-ring cleaving dioxygenases (PAH-RCD) was present in the surface media, which indicated that aerobic biodegradation of PAHs was possible. Overall, this study revealed the PAHs accumulated most at medium distance and depth, where biodegradation may be limited. Thus, the accumulation of PAHs below the surface of the bioretention cell may need to be considered during long-term operation and maintenance.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos , Biodegradação Ambiental , Monitoramento Ambiental/métodos , Medição de Risco
11.
Chemosphere ; 323: 138059, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36806806

RESUMO

Many groundwater aquifers around the world are contaminated with trichloroethene (TCE), which can be harmful to human and ecosystem health. Permeable Reactive Barriers (PRB) are commonly used to remediate TCE-contaminated groundwaters especially when a point source is ill defined. Using biosolids from wastewater treatment plants as a PRB filling material can provide a source of carbon and nutrients for dechlorinating bacterial activity. However, under the anaerobic conditions of the PRB, methanogenesis can also occur which can adversely affect reductive dechlorination. We conducted bench scale experiments to evaluate the effect of biosolids on TCE reductive dechlorination and found that methanogenesis was significantly higher in the reactors amended with biosolids, but that reductive dechlorination did not decrease. Furthermore, the microbial communities in the biosolid-enhanced reactors were more abundant with obligate dechlorinators, such as Dehalobacter and Dehalogenimonas, than the reactors amended only with the dechlorinating culture. The biosolids enhanced the presence and abundance of methanogens and acetogens, which had a positive effect on maintaining an efficient dechlorinating microbial community and provided the necessary enzymes, cofactors, and electron donors. These results indicate that waste materials such as biosolids can be turned into a valuable resource for bioremediation of TCE and likely other contaminants.


Assuntos
Água Subterrânea , Microbiota , Tricloroetileno , Humanos , Biossólidos , Tricloroetileno/análise , Bactérias , Biodegradação Ambiental , Água Subterrânea/microbiologia
12.
Sci Total Environ ; 856(Pt 2): 159166, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202364

RESUMO

Monkeypox disease (MPXD), a viral disease caused by the monkeypox virus (MPXV), is an emerging zoonotic disease endemic in some countries of Central and Western Africa but seldom reported outside the affected region. Since May 2022, MPXD has been reported at least in 74 countries globally, prompting the World Health Organization to declare the MPXD outbreak a Public Health Emergency of International Concern. As of July 24, 2022; 92 % (68/74) of the countries with reported MPXD cases had no historical MPXD case reports. From the One Health perspective, the spread of MPXV in the environment poses a risk not only to humans but also to small mammals and may, ultimately, spread to potent novel host populations. Wastewater-based surveillance (WBS) has been extensively utilized to monitor communicable diseases, particularly during the ongoing COVID-19 pandemic. It helped in monitoring infectious disease caseloads as well as specific viral variants circulating in communities. The detection of MPXV DNA in lesion materials (e.g. skin, vesicle fluid, crusts), skin rashes, and various body fluids, including respiratory and nasal secretions, saliva, urine, feces, and semen of infected individuals, supports the possibility of using WBS as an early proxy for the detection of MPXV infections. WBS of MPXV DNA can be used to monitor MPXV activity/trends in sewerage network areas even before detecting laboratory-confirmed clinical cases within a community. However, several factors affect the detection of MPXV in wastewater including, but not limited to, routes and duration time of virus shedding by infected individuals, infection rates in the relevant affected population, environmental persistence, the processes and analytical sensitivity of the used methods. Further research is needed to identify the key factors that impact the detection of MPXV biomarkers in wastewater and improve the utility of WBS of MPXV as an early warning and monitoring tool for safeguarding human health. In this review, we shortly summarize aspects of the MPXV outbreak relevant to wastewater monitoring and discuss the challenges associated with WBS.


Assuntos
COVID-19 , Mpox , Animais , Humanos , Mpox/epidemiologia , Mpox/diagnóstico , Mpox/patologia , Águas Residuárias , Pandemias , COVID-19/epidemiologia , Monkeypox virus/genética , DNA Viral , Monitoramento Ambiental , Mamíferos
13.
medRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398480

RESUMO

Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of the field blurred the boundary between measuring biomarkers for research activities and for pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process (or associated data management safeguards), introducing the potential for adverse outcomes for WBT professionals and community members. To address this deficiency, an interdisciplinary group developed a framework for a structured ethical review of WBT. The workshop employed a consensus approach to create this framework as a set of 11-questions derived from primarily public health guidance because of the common exemption of wastewater samples to human subject research considerations. This study retrospectively applied the set of questions to peer- reviewed published reports on SARS-CoV-2 monitoring campaigns covering the emergent phase of the pandemic from March 2020 to February 2022 (n=53). Overall, 43% of the responses to the questions were unable to be assessed because of lack of reported information. It is therefore hypothesized that a systematic framework would at a minimum improve the communication of key ethical considerations for the application of WBT. Consistent application of a standardized ethical review will also assist in developing an engaged practice of critically applying and updating approaches and techniques to reflect the concerns held by both those practicing and being monitored by WBT supported campaigns. Synopsis: Development of a structured ethical review facilitates retrospective analysis of published studies and drafted scenarios in the context of wastewater-based testing.

14.
Sci Total Environ ; 808: 152033, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34883175

RESUMO

In this study, 14 virus concentration protocols based on centrifugation, filtration, polyethylene glycol (PEG) precipitation and ultrafiltration were tested for their efficacy for the quantification of SARS-CoV-2 in wastewater samples. These protocols were paired with four RNA extraction procedures resulting in a combination of 50 unique approaches. Bovine respiratory syncytial virus (BRSV) was used as a process control and seeded in each wastewater sample subjected to all 50 protocols. The recovery of BRSV obtained through the application of 50 unique approaches ranged from <0.03 to 64.7% (±1.6%). Combination of centrifugation as the solid removal step, ultrafiltration (Amicon-UF-15; 100 kDa cut-off; protocol 9) as the primary virus concentration method, and Zymo Quick-RNA extraction kit provided the highest BRSV recovery (64.7 ± 1.6%). To determine the impact of prolonged storage of large wastewater sample volume (900 mL) at -20 °C on enveloped virus decay, the BRSV seeded wastewaters samples were stored at -20 °C up to 110 days and analyzed using the most efficient concentration (protocol 9) and extraction (Zymo Quick-RNA kit) methods. BRSV RNA followed a first-order decay rate (k = 0.04/h with r2 = 0.99) in wastewater. Finally, 21 wastewater influent samples from five wastewater treatment plants (WWTPs) in southern Maryland, USA were analyzed between May to August 2020 to determine SARS-CoV-2 RNA concentrations. SARS-CoV-2 RNA was quantifiable in 17/21 (81%) of the influent wastewater samples with concentration ranging from 1.10 (±0.10) × 104 to 2.38 (±0.16) × 106 gene copies/L. Among the RT-qPCR assays tested, US CDC N1 assay was the most sensitive followed by US CDC N2, E_Sarbeco, and RdRp assays. Data presented in this study may enhance our understanding on the effective concentration and extraction of SARS-CoV-2 from wastewater.


Assuntos
COVID-19 , Águas Residuárias , Animais , Bovinos , Humanos , RNA Viral , SARS-CoV-2 , Ultrafiltração
15.
Chemosphere ; 307(Pt 4): 135753, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35963377

RESUMO

Stormwater from complex land uses is an important contributor of contaminants of concern (COCs) such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), Copper, and Zinc to receiving water bodies. A large portion of these COCs bind to particulate matter in stormwater, which can be removed through filtration by traditional media. However, the remaining dissolved COCs can be significant and require special attention such as engineered treatment measures and media. Biochar is a porous sorbent produced from a variety of organic materials. In the last decade biochar has been gaining attention as a stormwater treatment medium due to low cost compared to activated carbon. However, biochar is not a uniform product and selection of an appropriate biochar for the removal of specific contaminants can be a complex process. Biochars are synthesized from various feedstocks and using different manufacturing approaches, including pyrolysis temperature, impact the biochar properties thus affecting ability to remove stormwater contaminants. The local availability of specific biochar products is another important consideration. An evaluation of proposed stormwater control measure (SCM) media needs to consider the dynamic conditions associated with stormwater and its management, but the passive requirements of the SCM. The media should be able to mitigate flood risks, remove targeted COCs under high flow SCM conditions, and address practical considerations like cost, sourcing, and construction and maintenance. This paper outlines a process for selecting promising candidates for SCM media and evaluating their performance through laboratory tests and field deployment with special attention to unique stormwater considerations.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Purificação da Água , Carvão Vegetal , Cobre , Material Particulado , Chuva , Água , Abastecimento de Água , Zinco
16.
J Hazard Mater Adv ; 8: 100159, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36619827

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic starting in 2019 with nearly 500 million confirmed cases as of April 2022. Infection with SARS-CoV-2 is accompanied by shedding of virus in stool, and its presence in wastewater samples has been documented globally. Therefore, monitoring of SARS-CoV-2 in wastewater offers a promising approach to assess the pandemic situation covering pre-symptomatic and asymptomatic cases in areas with limited clinical testing. In this study, the presence of SARS-CoV-2 RNA in wastewater from five wastewater resource recovery facilities (WRRFs), located in two adjacent counties, was investigated and compared with the number of clinical COVID-19 cases during a 2020-2021 outbreak in United States. Statistical correlation analyses of SARS-CoV-2 viral abundance in wastewater and COVID-19 daily vs weekly clinical cases was performed. While a weak correlation on a daily basis was observed, this correlation improved when weekly clinical case data were applied. The viral fecal indicator Pepper Mild Mottle Virus (PMMoV) was furthermore used to assess the effects of normalization and the impact of dilution due to infiltration in the wastewater sheds. Normalization did not improve the correlations with clinical data. However, PMMoV provided important information about infiltration and presence of industrial wastewater discharge in the wastewater sheds. This study showed the utility of WBE to assist in public health responses to COVID-19, emphasizing that routine monitoring of large WRRFs could provide sufficient information for large-scale dynamics.

17.
Environ Sci Technol Lett ; 9(2): 160-165, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566370

RESUMO

With the rapid onset of the COVID-19 pandemic, wastewater-based epidemiology sampling methodologies for SARS-CoV-2 were often implemented quickly and may not have considered the unique drainage catchment characteristics. This study assessed the impact of grab versus composite sampling on the detection and quantification of SARS-CoV-2 in four different catchment scales with flow rates ranging from high flow (wastewater treatment plant influent) to medium flow (neighborhood scale) to low-flow (city block scale) to ultralow flow (building scale). At the high-flow site, grab samples were comparable to 24 h composite samples with SARS-CoV-2 detected in all samples and differed in concentration from the composite by <1 log 10 unit. However, as the size of the catchment decreased, the percentage of negative grab samples increased despite all respective composites being positive, and the SARS-CoV-2 concentrations of grab samples varied from those of the composites by up to almost 2 log 10 units. At the ultra-low-flow site, increased sampling frequencies generated composite samples with higher fidelity to the 5 min composite, which is the closest estimate of the true SARS-CoV-2 composite concentration that could be measured. Thus, composite sampling is more likely to compensate for temporal signal variability while grab samples do not, especially as the catchment basin size decreases.

18.
Sci Total Environ ; 835: 155347, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35460780

RESUMO

Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias , RNA Viral , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
19.
Water Environ Res ; 94(11): e10807, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36372781

RESUMO

Wastewater surveillance, also known as wastewater-based epidemiology (WBE), has been successfully used to detect SARS-CoV-2 and other viruses in sewage in many locations in the United States and globally. This includes implementation of the surveillance on college and university campuses. A two-phase study was conducted during the 2020-2021 academic year to test the feasibility of a WBE system on campus and to supplement the clinical COVID-19 testing performed for the student, staff, and faculty body. The primary objective during the Fall 2020 semester was to monitor a large portion of the on-campus population and to obtain an understanding of the spreading of the SARS-CoV-2 virus. The Spring 2021 objective was focused on selected residence halls and groups of residents on campus, as this was more efficient and relevant for an effective follow-up response. Logistical problems and planning oversights initially occurred but were corrected with improved communication and experience. Many lessons were learned, including effective mapping, site planning, communication, personnel organization, and equipment management, and obtained along the way, thereby paving an opportune guide for future planning efforts. PRACTITIONER POINTS: WBE was successful in the detection of many SARS-CoV-2 variants incl. Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron. Careful planning and contingencies were essential for a successful implementation of a SARS-CoV-2 monitoring program. A surveillance program may be important for detection and monitoring of other public health relevant targets in wastewater incl. bacteria, viruses, fungi and viruses. Diverse lessons were learned incl. effective mapping, site planning, communication, personnel organization, and equipment management, thereby providing a guide for future planning efforts.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Teste para COVID-19 , Universidades , COVID-19/epidemiologia
20.
Environ Health Perspect ; 130(6): 67010, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767012

RESUMO

BACKGROUND: Positive correlations have been reported between wastewater SARS-CoV-2 concentrations and a community's burden of infection, disease or both. However, previous studies mostly compared wastewater to clinical case counts or nonrepresentative convenience samples, limiting their quantitative potential. OBJECTIVES: This study examined whether wastewater SARS-CoV-2 concentrations could provide better estimations for SARS-CoV-2 community prevalence than reported cases of COVID-19. In addition, this study tested whether wastewater-based epidemiology methods could identify neighborhood-level COVID-19 hotspots and SARS-CoV-2 variants. METHODS: Community SARS-CoV-2 prevalence was estimated from eight randomized door-to-door nasal swab sampling events in six Oregon communities of disparate size, location, and demography over a 10-month period. Simultaneously, wastewater SARS-CoV-2 concentrations were quantified at each community's wastewater treatment plant and from 22 Newport, Oregon, neighborhoods. SARS-CoV-2 RNA was sequenced from all positive wastewater and nasal swab samples. Clinically reported case counts were obtained from the Oregon Health Authority. RESULTS: Estimated community SARS-CoV-2 prevalence ranged from 8 to 1,687/10,000 persons. Community wastewater SARS-CoV-2 concentrations ranged from 2.9 to 5.1 log10 gene copies per liter. Wastewater SARS-CoV-2 concentrations were more highly correlated (Pearson's r=0.96; R2=0.91) with community prevalence than were clinically reported cases of COVID-19 (Pearson's r=0.85; R2=0.73). Monte Carlo simulations indicated that wastewater SARS-CoV-2 concentrations were significantly better than clinically reported cases at estimating prevalence (p<0.05). In addition, wastewater analyses determined neighborhood-level COVID-19 hot spots and identified SARS-CoV-2 variants (B.1 and B.1.399) at the neighborhood and city scales. DISCUSSION: The greater reliability of wastewater SARS-CoV-2 concentrations over clinically reported case counts was likely due to systematic biases that affect reported case counts, including variations in access to testing and underreporting of asymptomatic cases. With these advantages, combined with scalability and low costs, wastewater-based epidemiology can be a key component in public health surveillance of COVID-19 and other communicable infections. https://doi.org/10.1289/EHP10289.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Oregon/epidemiologia , Prevalência , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA