Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593796

RESUMO

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Assuntos
Epigênese Genética , Interferon Tipo I , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Células B de Memória , Animais , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/genética , Memória Imunológica/imunologia , Doença Crônica , Subpopulações de Linfócitos B/imunologia , Análise de Célula Única
2.
Immunol Cell Biol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905389

RESUMO

Immunology for all: Most scientific communication has historically been limited to visual imagery and the written or spoken word, often in the form of dense articles obscured by jargon. Clear communication of science is vital to enable the public to engage with important scientific discoveries and to limit medical distrust. However, scientific communication is often executed in a way which neglects people with blindness, low vision and diverse needs. Our aim for the exhibit at the Monash Sensory Science Exhibition on Autoimmunity 2023 at Monash University was to develop novel, tactile and informative models to help better communicate the scientific principles that underpin autoimmune disease and immunology. As B-cell biologists, we decided to focus our exhibit for this workshop on antibody-mediated autoimmunity. Antibodies are key components of the immune system, providing protection against a range of diverse pathogens. However, in the context of autoimmunity, they can also drive pathology.

3.
Immunol Cell Biol ; 100(5): 308-311, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35353930

RESUMO

It is vitally important that we understand whether mRNA vaccines are capable of generating high-affinity, longlived immune memory cells to SARS-CoV-2. To this end, a recent study by Ellebedy, Kim and colleagues provide much-needed insight into the production and quality of humoral immune cells generated by the BNT162b2 vaccine.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Linfócitos B , Vacina BNT162 , Vacinas contra COVID-19 , Humanos
4.
Front Immunol ; 15: 1385319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962004

RESUMO

The immune system comprises a complex yet tightly regulated network of cells and molecules that play a critical role in protecting the body from infection and disease. The activity and development of each immune cell is regulated in a myriad of ways including through the cytokine milieu, the availability of key receptors, via tailored intracellular signalling cascades, dedicated transcription factors and even by directly modulating gene accessibility and expression; the latter is more commonly known as epigenetic regulation. In recent years, epigenetic regulators have begun to emerge as key players involved in modulating the immune system. Among these, the lysine methyltransferase DOT1L has gained significant attention for its involvement in orchestrating immune cell formation and function. In this review we provide an overview of the role of DOT1L across the immune system and the implications of this role on health and disease. We begin by elucidating the general mechanisms of DOT1L-mediated histone methylation and its impact on gene expression within immune cells. Subsequently, we provide a detailed and comprehensive overview of recent studies that identify DOT1L as a crucial regulator of immune cell development, differentiation, and activation. Next, we discuss the potential mechanisms of DOT1L-mediated regulation of immune cell function and shed light on how DOT1L might be contributing to immune cell homeostasis and dysfunction. We then provide food for thought by highlighting some of the current obstacles and technical limitations precluding a more in-depth elucidation of DOT1L's role. Finally, we explore the potential therapeutic implications of targeting DOT1L in the context of immune-related diseases and discuss ongoing research efforts to this end. Overall, this review consolidates the current paradigm regarding DOT1L's role across the immune network and emphasises its critical role in governing the healthy immune system and its potential as a novel therapeutic target for immune-related diseases. A deeper understanding of DOT1L's immunomodulatory functions could pave the way for innovative therapeutic approaches which fine-tune the immune response to enhance or restore human health.


Assuntos
Epigênese Genética , Histona-Lisina N-Metiltransferase , Sistema Imunitário , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Animais , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Histonas/metabolismo , Histonas/imunologia
5.
Oxf Open Immunol ; 2(1): iqab018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36845573

RESUMO

Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre (GC), a site where responding B cells undergo affinity maturation and are one of the major routes for memory B cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the GC and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of GC and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as severe acute respiratory syndrome coronavirus 2.

6.
Cell Rep ; 36(3): 109430, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289356

RESUMO

While the intrinsic apoptosis pathway is thought to play a central role in shaping the B cell lineage, its precise role in mature B cell homeostasis remains elusive. Using mice in which mature B cells are unable to undergo apoptotic cell death, we show that apoptosis constrains follicular B (FoB) cell lifespan but plays no role in marginal zone B (MZB) cell homeostasis. In these mice, FoB cells accumulate abnormally. This intensifies intercellular competition for BAFF, resulting in a contraction of the MZB cell compartment, and reducing the growth, trafficking, and fitness of FoB cells. Diminished BAFF signaling dampens the non-canonical NF-κB pathway, undermining FoB cell growth despite the concurrent triggering of a protective p53 response. Thus, MZB and FoB cells exhibit a differential requirement for the intrinsic apoptosis pathway. Homeostatic apoptosis constrains the size of the FoB cell compartment, thereby preventing competition-induced FoB cell atrophy.


Assuntos
Apoptose , Linfócitos B/patologia , Homeostase , Animais , Formação de Anticorpos/imunologia , Atrofia , Fator Ativador de Células B/metabolismo , Contagem de Células , Diferenciação Celular/genética , Proliferação de Células/genética , Tamanho Celular , Sobrevivência Celular/genética , Senescência Celular/genética , Deleção de Genes , Regulação da Expressão Gênica , Camundongos Knockout , Análise de Sequência de RNA , Timo/imunologia , Fatores de Transcrição/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
7.
Cell Rep ; 33(11): 108504, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326791

RESUMO

Histone modifiers are essential for the ability of immune cells to reprogram their gene expression during differentiation. The recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like) induces oncogenic gene expression in a subset of B cell leukemias. Despite its importance, its role in the humoral immune system is unclear. Here, we demonstrate that DOT1L is a critical regulator of B cell biology. B cell development is defective in Dot1lf/fMb1Cre/+ mice, culminating in a reduction of peripheral mature B cells. Upon immunization or influenza infection of Dot1lf/fCd23Cre/+ mice, class-switched antibody-secreting cells are significantly attenuated and germinal centers fail to form. Consequently, DOT1L is essential for B cell memory formation. Transcriptome, pathway, and histological analyses identified a role for DOT1L in reprogramming gene expression for appropriate localization of B cells during the initial stage of the response. Together, these results demonstrate an essential role for DOT1L in generating an effective humoral immune response.


Assuntos
Histona-Lisina N-Metiltransferase/imunologia , Imunidade Humoral/imunologia , Metiltransferases/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA