Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Transplant ; 31: 9636897221136787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36564913

RESUMO

Myocardial infarctions affect approximately 735,000 people annually in the United States and have a substantial impact on quality of life. Neonates have an enhanced capability of repairing cardiovascular damage, while adults do not. The mechanistic basis for this age-dependent difference in regenerative capacity remains unknown. Recent studies have shown that microRNAs (miRNAs) play a significant role in regulating the regenerative ability of cardiovascular cells. This report defines the alterations in miRNA expression within the cardiovascular repair zone of infarcted sheep hearts following intracardiac injection of neonatal islet-1+ cardiovascular progenitor cells. Sheep were infarcted via left anterior descending coronary artery ligation. After 3 to 4 weeks of infarction, sheep neonatal islet-1+ cardiovascular progenitor cells were injected into the infarcted area for repair. Cell-treated sheep were euthanized 2 months following cell injection, and their hearts were harvested for the analysis of miRNA and gene expression within the cardiovascular repair zone. Ten miRNAs were differentially regulated in vivo, including miR-99, miR-100, miR-302a, miR-208a, miR-665, miR-1, miR-499a, miR-34a, miR-133a, and miR-199a. These miRNAs promote stemness, cell division, and survival. Several signaling pathways are regulated by these miRNAs, including Hippo, Wnt, and Erythroblastic Leukemia Viral Oncogene B (ERBB). Transcripts encoding Wnt, ERBB, and Neuregulin 1 (NRG1) were elevated in vivo in the infarct repair zone. Wnt5a signaling and ERBB/NRG1 transcripts contribute to activation of Yes-Associated Protein 1. MiRNAs that impact proliferation, cell survival, and signaling pathways that promote regeneration were induced during cardiovascular repair in the sheep model. This information can be used to design new approaches for the optimization of miRNA-based treatments for the heart.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Ovinos/genética , Qualidade de Vida , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Transplante de Células
2.
Transplant Direct ; 3(5): e153, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28573188

RESUMO

BACKGROUND: Cardiovascular progenitor cells (CPCs) have been cultured on various scaffolds to resolve the challenge of cell retention after transplantation and to improve functional outcome after cell-based cardiac therapy. Previous studies have reported successful culture of fully differentiated cardiomyocytes on scaffolds of various types, and ongoing efforts are focused on optimizing the mix of cardiomyocytes and endothelial cells as well as on the identification of a source of progenitors capable of reversing cardiovascular damage. A scaffold culture that fosters cell differentiation into cardiomyocytes and endothelial cells while maintaining a progenitor reserve would benefit allogeneic cell transplantation. METHODS: Isl-1 + c-Kit + CPCs were isolated as clonal populations from human and sheep heart tissue. After hyper-crosslinked carbohydrate polymer scaffold culture, cells were assessed for differentiation, intracellular signaling, cell cycling, and growth factor/chemokine expression using real time polymerase chain reaction, flow cytometry, immunohistochemistry, and calcium staining. RESULTS: Insulin-like growth factor 1, hepatocyte growth factor, and stromal cell derived factor 1α paracrine factors were induced, protein kinase B signaling was activated, extracellular signal-regulated kinase phosphorylation was reduced and differentiation into both cardiomyocytes and endothelial cells was induced by scaffold-based cell culture. Interestingly, movement of CPCs out of the G1 phase of the cell cycle and increased expression of pluripotency genes PLOU5F1 (Oct4) and T (Brachyury) within a portion of the cultured population occurred, which suggests the maintenance of a progenitor population. Two-color immunostaining and 3-color fluorescence-activated cell sorting analysis confirmed the presence of both Isl-1 expressing undifferentiated cells and differentiated cells identified by troponin T and von Willebrand factor expression. Ki-67 labeling verified the presence of proliferating cells that remained in situ alongside the differentiated functional derivatives. CONCLUSIONS: Cloned Isl-1 + c-kit + CPCs maintained on a hyper-cross linked polymer scaffold retain dual potential for proliferation and differentiation, providing a scaffold-based stem cell source for transplantation of committed and proliferating cardiovascular progenitors for functional testing in preclinical models of cell-based repair.

3.
BMC Immunol ; 7: 3, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16549031

RESUMO

BACKGROUND: The use of porcine cells and organs as a source of xenografts for human patients would vastly increase the donor pool; however, both humans and Old World primates vigorously reject pig tissues due to xenoantibodies that react with the polysaccharide galactose alpha (1,3) galactose (alphaGal) present on the surface of many porcine cells. We previously examined the xenoantibody response in patients exposed to porcine hepatocytes via treatment(s) with bioartficial liver devices (BALs), composed of porcine cells in a support matrix. We determined that xenoantibodies in BAL-treated patients are predominantly directed at porcine alphaGal carbohydrate epitopes, and are encoded by a small number of germline heavy chain variable region (VH) immunoglobulin genes. The studies described in this manuscript were designed to identify whether the xenoantibody responses and the IgVH genes encoding antibodies to porcine hepatocytes in non-human primates used as preclinical models are similar to those in humans. Adult non-immunosuppressed rhesus monkeys (Macaca mulatta) were injected intra-portally with porcine hepatocytes or heterotopically transplanted with a porcine liver lobe. Peripheral blood leukocytes and serum were obtained prior to and at multiple time points after exposure, and the immune response was characterized, using ELISA to evaluate the levels and specificities of circulating xenoantibodies, and the production of cDNA libraries to determine the genes used by B cells to encode those antibodies. RESULTS: Xenoantibodies produced following exposure to isolated hepatocytes and solid organ liver grafts were predominantly encoded by genes in the VH3 family, with a minor contribution from the VH4 family. Immunoglobulin heavy-chain gene (VH) cDNA library screening and gene sequencing of IgM libraries identified the genes as most closely-related to the IGHV3-11 and IGHV4-59 germline progenitors. One of the genes most similar to IGHV3-11, VH3-11cyno, has not been previously identified, and encodes xenoantibodies at later time points post-transplant. Sequencing of IgG clones revealed increased usage of the monkey germline progenitor most similar to human IGHV3-11 and the onset of mutations. CONCLUSION: The small number of IGVH genes encoding xenoantibodies to porcine hepatocytes in non-human primates and humans is highly conserved. Rhesus monkeys are an appropriate preclinical model for testing novel reagents such as those developed using structure-based drug design to target and deplete antibodies to porcine xenografts.


Assuntos
Anticorpos Heterófilos/genética , Genes de Cadeia Pesada de Imunoglobulina , Hepatócitos/imunologia , Região Variável de Imunoglobulina/genética , Transplante de Fígado/imunologia , Suínos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Heterófilos/sangue , Anticorpos Heterófilos/química , Sequência Consenso , DNA/química , Galactose/química , Galactose/imunologia , Expressão Gênica , Humanos , Macaca mulatta , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
4.
Xenotransplantation ; 14(2): 135-44, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17381688

RESUMO

BACKGROUND: Recent work has indicated a role for anti-Gal alpha 1-3Gal (Gal) and anti-non-Gal xenoantibodies in the primate humoral rejection response against human-decay accelerating factor (hDAF) transgenic pig organs. Our laboratory has shown that anti-porcine xenograft antibodies in humans and non-human primates are encoded by a small number of germline IgV(H) progenitors. In this study, we extended our analysis to identify the IgV(H) genes encoding xenoantibodies in immunosuppressed cynomolgus monkeys (Macaca fascicularis) transplanted with hDAF-transgenic pig organs. METHODS: Three immunosuppressed monkeys underwent heterotopic heart transplantation with hDAF porcine heart xenografts. Two of three animals were given GAS914, a poly-L-lysine derivative shown to bind to anti-Gal xenoantibodies and neutralize them. One animal rejected its heart at post-operative day (POD) 39; a second animal rejected the transplanted heart at POD 78. The third monkey was euthanized on POD 36 but the heart was not rejected. Peripheral blood leukocytes (PBL) and serum were obtained from each animal before and at multiple time points after transplantation. We analyzed the immune response by enzyme-linked immunosorbent assay (ELISA) to confirm whether anti-Gal or anti-non-Gal xenoantibodies were induced after graft placement. Immunoglobulin heavy-chain gene (V(H)) cDNA libraries were then produced and screened. We generated soluble single-chain antibodies (scFv) to establish the binding specificity of the cloned immunoglobulin genes. RESULTS: Despite immunosuppression, which included the use of the polymer GAS914, the two animals that rejected their hearts showed elevated levels of cytotoxic anti-pig red blood cell (RBC) antibodies and anti-pig aortic endothelial cell (PAEC) antibodies. The monkey that did not reject its graft showed a decline in serum anti-RBC, anti-PAEC, and anti-Gal xenoantibodies when compared with pre-transplant levels. A V(H)3 family gene with a high level of sequence similarity to an allele of V(H)3-11, designated V(H)3-11(cyno), was expressed at elevated levels in the monkey that was not given GAS914 and whose graft was not rejected until POD 78. IgM but not IgG xenoantibodies directed at N-acetyl lactosamine (a precursor of the Gal epitope) were also induced in this animal. We produced soluble scFv from this new gene to determine whether this antibody could bind to the Gal carbohydrate, and demonstrated that this protein was capable of blocking the binding of human serum xenoantibody to Gal oligosaccharide, as had previously been shown with human V(H)3-11 scFv. CONCLUSIONS: DAF-transgenic organs transplanted into cynomolgus monkeys induce anti-Gal and anti-non-Gal xenoantibody responses mediated by both IgM and IgG xenoantibodies. Anti-non-Gal xenoantibodies are induced at high levels in animals treated with GAS914. Antibodies that bind to the Gal carbohydrate and to N-acetyl lactosamine are induced in the absence of GAS914 treatment. The animal whose heart remained beating for 78 days demonstrated increased usage of an antibody encoded by a germline progenitor that is structurally related, but distinct from IGHV311. This antibody binds to the Gal carbohydrate but does not induce the rapid rejection of the xenograft when expressed at high levels as early as day 8 post-transplantation.


Assuntos
Anticorpos Heterófilos/metabolismo , Antígenos CD55/imunologia , Perfilação da Expressão Gênica , Transplante de Coração/imunologia , Imunoglobulinas/metabolismo , Macaca fascicularis/imunologia , Transplante Heterólogo/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Heterófilos/genética , Antígenos Heterófilos/imunologia , Antígenos CD55/genética , Regulação da Expressão Gênica/imunologia , Rejeição de Enxerto/imunologia , Transplante de Coração/métodos , Humanos , Imunoglobulinas/genética , Terapia de Imunossupressão , Macaca fascicularis/genética , Masculino , Dados de Sequência Molecular , Suínos , Transgenes/genética , Transgenes/imunologia , Transplante Heterólogo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA