Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499721

RESUMO

The placenta is a temporary organ with a unique structure and function to ensure healthy fetal development. Placental dysfunction is involved in pre-eclampsia (PE), fetal growth restriction, preterm birth, and gestational diabetes mellitus (GDM). A diabetic state affects maternal and fetal health and may lead to functional alterations of placental metabolism, inflammation, hypoxia, and weight, amplifying the fetal stress. The placental molecular adaptations to the diabetic environment and the adaptive spatio-temporal consequences to elevated glucose or insulin are largely unknown (2). We aimed to identify gene expression signatures related to the diabetic placental pathology of placentas from women with diabetes mellitus. Human placenta samples (n = 77) consisting of healthy controls, women with either gestational diabetes mellitus (GDM), type 1 or type 2 diabetes, and women with GDM, type 1 or type 2 diabetes and superimposed PE were collected. Interestingly, gene expression differences quantified by total RNA sequencing were mainly driven by fetal sex rather than clinical diagnosis. Association of the principal components with a full set of clinical patient data identified fetal sex as the single main explanatory variable. Accordingly, placentas complicated by type 1 and type 2 diabetes showed only few differentially expressed genes, while possible effects of GDM and diabetic pregnancy complicated by PE were not identifiable in this cohort. We conclude that fetal sex has a prominent effect on the placental transcriptome, dominating and confounding gene expression signatures resulting from diabetes mellitus in settings of well-controlled diabetic disease. Our results support the notion of placenta as a sexual dimorphic organ.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Pré-Eclâmpsia , Gravidez em Diabéticas , Nascimento Prematuro , Feminino , Recém-Nascido , Gravidez , Humanos , Placenta/metabolismo , Diabetes Gestacional/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nascimento Prematuro/metabolismo , Gravidez em Diabéticas/metabolismo , Pré-Eclâmpsia/metabolismo
2.
Diabetologia ; 64(12): 2829-2842, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537857

RESUMO

AIMS/HYPOTHESIS: The impact of diabetic pregnancy has been investigated extensively regarding offspring metabolism; however, little is known about the influence on the heart. We aimed to characterise the effects of a diabetic pregnancy on male adult offspring cardiac health after feeding a high-fat diet in an established transgenic rat model. METHODS: We applied our rat model for maternal type 2 diabetes characterised by maternal insulin resistance with hyperglycaemia and hyperinsulinaemia. Diabetes was induced preconceptionally via doxycycline-induced knock down of the insulin receptor in transgenic rats. Male wild-type offspring of diabetic and normoglycaemic pregnancies were raised by foster mothers, followed up into adulthood and subgroups were challenged by a high-fat diet. Cardiac phenotype was assessed by innovative speckle tracking echocardiography, circulating factors, immunohistochemistry and gene expression in the heart. RESULTS: When feeding normal chow, we did not observe differences in cardiac function, gene expression and plasma brain natriuretic peptide between adult diabetic or normoglycaemic offspring. Interestingly, when being fed a high-fat diet, adult offspring of diabetic pregnancy demonstrated decreased global longitudinal (-14.82 ± 0.59 vs -16.60 ± 0.48%) and circumferential strain (-23.40 ± 0.57 vs -26.74 ± 0.34%), increased relative wall thickness (0.53 ± 0.06 vs 0.37 ± 0.02), altered cardiac gene expression, enlarged cardiomyocytes (106.60 ± 4.14 vs 87.94 ± 1.67 µm), an accumulation of immune cells in the heart (10.27 ± 0.30 vs 6.48 ± 0.48 per fov) and higher plasma brain natriuretic peptide levels (0.50 ± 0.12 vs 0.12 ± 0.03 ng/ml) compared with normoglycaemic offspring on a high-fat diet. Blood pressure, urinary albumin, blood glucose and body weight were unaltered between groups on a high-fat diet. CONCLUSIONS/INTERPRETATION: Diabetic pregnancy in rats induces cardiac dysfunction, left ventricular hypertrophy and altered proinflammatory status in adult offspring only after a high-fat diet. A diabetic pregnancy itself was not sufficient to impair myocardial function and gene expression in male offspring later in life. This suggests that a postnatal high-fat diet is important for the development of cardiac dysfunction in rat offspring after diabetic pregnancy. Our data provide evidence that a diabetic pregnancy is a novel cardiac risk factor that becomes relevant when other challenges, such as a high-fat diet, are present.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiopatias , Efeitos Tardios da Exposição Pré-Natal , Animais , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Feminino , Desenvolvimento Fetal , Masculino , Miócitos Cardíacos , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores de Risco
3.
Int J Mol Sci ; 22(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916404

RESUMO

Preeclampsia (PE) is characterized by the onset of hypertension (≥140/90 mmHg) and presence of proteinuria (>300 mg/L/24 h urine) or other maternal organ dysfunctions. During human PE, renal injuries have been observed. Some studies suggest that women with PE diagnosis have an increased risk to develop renal diseases later in life. However, in human studies PE as a single cause of this development cannot be investigated. Here, we aimed to investigate the effect of PE on postpartum renal damage in an established transgenic PE rat model. Female rats harboring the human-angiotensinogen gene develop a preeclamptic phenotype after mating with male rats harboring the human-renin gene, but are normotensive before and after pregnancy. During pregnancy PE rats developed mild tubular and glomerular changes assessed by histologic analysis, increased gene expression of renal damage markers such as kidney injury marker 1 and connective-tissue growth factor, and albuminuria compared to female wild-type rats (WT). However, four weeks postpartum, most PE-related renal pathologies were absent, including albuminuria and elevated biomarker expression. Only mild enlargement of the glomerular tuft could be detected. Overall, the glomerular and tubular function were affected during pregnancy in the transgenic PE rat. However, almost all these pathologies observed during PE recovered postpartum.


Assuntos
Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Período Pós-Parto , Pré-Eclâmpsia/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Nefropatias/genética , Nefropatias/patologia , Nefropatias/fisiopatologia , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
4.
Hypertension ; 77(1): 202-215, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249866

RESUMO

Several studies show an association of maternal diabetes during pregnancy with adverse offspring metabolic health. Other studies, however, suggest that this effect might be biased by obesity, which is independently associated with offspring metabolic disease and often coexistent to maternal diabetes. We performed a prospective study in a rat model to test the hypothesis that the burden of a diabetic pregnancy without obesity deteriorates metabolic health in male offspring. We generated maternal type 2 diabetes before conception that persisted during pregnancy by knockdown of the insulin receptor in small hairpin RNA-expressing transgenic rats. Male WT (wild type) offspring were followed up until adulthood and metabolically challenged by high-fat diet. Blood glucose was measured continuously via a telemetry device. Glucose and insulin tolerance tests were performed, and body composition was analyzed. Weight gain and glucose levels during adolescence and adulthood were similar in male offspring of diabetic and control pregnancies. Body weight and fat mass after high-fat diet, as well as glucose and insulin tolerance tests, were unaltered between male adult offspring of both groups. Glycemic control consisting of up to 49 000 individual glucose measures was comparable between both groups. Intrauterine exposure to maternal hyperglycemia and hyperinsulinemia without obesity had no impact on male offspring metabolic health in our model. We conclude that the intrauterine exposure itself does not represent a mechanism for fetal programming of diabetes and obesity in our model. Other maternal metabolic parameters during pregnancy, such as obesity, might impact long-term offspring metabolic health.


Assuntos
Diabetes Mellitus/etiologia , Diabetes Gestacional , Obesidade/etiologia , Animais , Glicemia/análise , Composição Corporal , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Teste de Tolerância a Glucose , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA