Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Microbiol ; 18(3): 340-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332529

RESUMO

Borna disease virus (BDV) is a non-segmented negative-stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell-cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell-cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin-mediated processing of GP and demonstrate that cleaved and fusion-active GP is strictly necessary for the cell-to-cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus-glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.


Assuntos
Vírus da Doença de Borna/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Glicoproteínas de Membrana/metabolismo , Animais , Astrócitos/virologia , Benzamidinas/farmacologia , Vírus da Doença de Borna/metabolismo , Encéfalo/citologia , Encéfalo/virologia , Fusão Celular , Células Cultivadas , Chlorocebus aethiops , Cães , Furina/antagonistas & inibidores , Células Madin Darby de Rim Canino/virologia , Oligopeptídeos/farmacologia , Ratos Endogâmicos Lew , Células Vero/virologia
2.
J Neurosci Methods ; 212(1): 156-64, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23026192

RESUMO

The study of slowly progressing brain diseases in which glial cells play a pathogenic role requires astrocytes that have been cultured for several weeks. We characterized neocortical astrocytes, grown for up to 42 days in vitro (DIV), from newborn rats and mice by indirect immunofluorescence technique, Western blot, and real-time RT-PCR analyses. We obtained highly enriched rat and mouse astrocyte cultures, where most cells were positively stained for the astrocyte markers GFAP, vimentin, and S100ß, whereas neuronal and oligodendrocyte markers were undetectable. The protein and mRNA levels of GFAP, vimentin, and nestin were higher in rat than in mouse astrocytes. From 28 to 42 DIV, the levels of vimentin and nestin, but not of GFAP, decreased in both species, with an increase in the vimentin-GFAP ratio of 1.7 for rat, and of 0.9 for mouse astrocytes suggesting that the rat cultures were more differentiated than the mouse cultures, although both remained partially immature. The protoplasmic appearance of the cells, the negative A2B5 immunoreactivity, and the expression of the glutamate transporters GLAST and GLT-1 indicate that the rat and mouse cultures contained mainly type I astrocytes. The protein levels of GLAST and GLT-1 decreased from 28 to 42 DIV in the mouse, but not in the rat astrocytes, suggesting that the rat cultures are suitable for functional studies. Thus, under the same culture conditions, astrocyte cultures from rats and mice differ in phenotype, differentiation, and functionality. This finding should be taken into account when long-lasting glial reaction patterns are being studied.


Assuntos
Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Fenótipo , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Gangliosídeos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Ratos , Especificidade da Espécie , Fatores de Tempo , Vimentina/genética , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA