Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37893294

RESUMO

This work demonstrates the green production of a graphene ink for inkjet printing and its use as a hole transport layer (HTL) in an organic solar cell. Graphene as an HTL improves the selective hole extraction at the anode and prevents charge recombination at the electronic interface and metal diffusion into the photoactive layer. Graphite was exfoliated in water, concentrated by iterative centrifugation, and characterized by Raman. The concentrated graphene ink was incorporated into inverted organic solar cells by inkjet printing on the active polymer in an ambient atmosphere. Argon plasma was used to enhance wetting of the polymer with the graphene ink during printing. The argon plasma treatment of the active polymer P3HT:PCBM was investigated by XPS, AFM and contact angle measurements. Efficiency and lifetime studies undertaken show that the device with graphene as HTL is fully functional and has good potential for an inkjet printable and flexible alternative to PEDOT:PSS.

2.
Mater Adv ; 2(16): 5494-5500, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34458848

RESUMO

Currently, energy-efficient electrocatalytic oxygen evolution from water involves the use of noble metal oxides. Here, we show that highly p-conducting zinc cobaltite spinel Zn1.2Co1.8O3.5 offers an enhanced electrocatalytic activity for oxygen evolution. We refer to previous studies on sputtered Zn-Co spinels with optimized conductivity for implementation as (p-type) transparent conducting oxides. Based on that, we manufacture off-stoichiometric conducting p-spinel catalytic anodes on tetragonal Ti, Au-Ti and hexagonal Al-doped ZnO carriers and report the evolution of O2 at Tafel slopes between 40.5 and 48 mV dec-1 and at overpotentials between 0.35 and 0.43 V (at 10 mA cm-2). The anodic stability, i.e., 50 h of continuous O2 electrolysis in 1 M KOH, suggests that increasing the conductivity is advantageous for electrolysis, particularly for reducing the ohmic losses and ensuring activity across the entire surface. We conclude by pointing out the merits of improving p-doping in Zn-Co spinels by optimized growth on a tetragonal Ti-carrier and their application as dimension-stable 3d-metal anodes.

3.
ChemSusChem ; 11(6): 1063-1072, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29389081

RESUMO

A convenient and highly efficient way of synthesizing 2-bromopropionic acid (2-BrPA) from lactide is presented. The procedure uses ionic liquids obtained from the addition of HBr to ammonium-based zwitterions as the solvent and bromination agent. The buffered HBr acidity, high polarity, and charge stabilizing character of the ionic liquid (IL) enable the synthesis of 2-BrPA with excellent selectivity. The best results are obtained with an imidazolium-based IL, that is, 1-(4-butanesulfonic acid)-3-methylimidazolium bromide ([MIMBS]Br). The HBr loading and water content of the IL are crucial parameters for the bromination reaction. The formed 2-BrPA product can be selectively isolated by extraction from the IL, and the unconverted substrate remains in the [MIMBS]Br IL for the next run. Successful recycling of the IL over four cycles is demonstrated.

4.
ChemSusChem ; 11(17): 2936-2943, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-29873891

RESUMO

A new reaction system for the highly selective, hydrobromic acid catalyzed conversion of lactide into acrylic acid under mild conditions is reported. The applied liquid reaction system consists of a temperature-stable bromide-containing ionic liquid and 2-bromopropionic acid as a source of dry HBr, with no volatile organic solvent being used. This allows for the in situ removal of the formed acrylic acid, leading to an unmatched acrylic acid selectivity of over 72 % at full lactide conversion. Accounting for leftover reaction intermediates on the way to acrylic acid, which could be recycled in an elaborate continuous process, the proposed reaction system shows potential for acrylic acid yields well above 85 % in the liquid phase. This opens new avenues for the effective conversion of biogenic lactic acid (e.g., obtained by fermentation from starch) to acrylic acid. The resulting bio-acrylic acid is a highly attractive product for, for example, the diaper industry, where we expect consumers to be especially sensitive to aspects of sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA