Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 512(7514): 324-7, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25043048

RESUMO

Monoallelic point mutations of isocitrate dehydrogenase type 1 (IDH1) are an early and defining event in the development of a subgroup of gliomas and other types of tumour. They almost uniformly occur in the critical arginine residue (Arg 132) in the catalytic pocket, resulting in a neomorphic enzymatic function, production of the oncometabolite 2-hydroxyglutarate (2-HG), genomic hypermethylation, genetic instability and malignant transformation. More than 70% of diffuse grade II and grade III gliomas carry the most frequent mutation, IDH1(R132H) (ref. 3). From an immunological perspective, IDH1(R132H) represents a potential target for immunotherapy as it is a tumour-specific potential neoantigen with high uniformity and penetrance expressed in all tumour cells. Here we demonstrate that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination. Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation-specific CD4(+) T-helper-1 (TH1) responses. CD4(+) TH1 cells and antibodies spontaneously occurring in patients with IDH1(R132H)-mutated gliomas specifically recognize IDH1(R132H). Peptide vaccination of mice devoid of mouse MHC and transgenic for human MHC class I and II with IDH1(R132H) p123-142 results in an effective MHC class II-restricted mutation-specific antitumour immune response and control of pre-established syngeneic IDH1(R132H)-expressing tumours in a CD4(+) T-cell-dependent manner. As IDH1(R132H) is present in all tumour cells of these slow-growing gliomas, a mutation-specific anti-IDH1(R132H) vaccine may represent a viable novel therapeutic strategy for IDH1(R132H)-mutated tumours.


Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Glioma/imunologia , Glioma/terapia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/imunologia , Proteínas Mutantes/imunologia , Animais , Especificidade de Anticorpos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Feminino , Glioma/enzimologia , Glioma/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunidade Humoral , Imunoterapia/métodos , Masculino , Camundongos , Proteínas Mutantes/genética , Mutação , Linfócitos T Auxiliares-Indutores/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
BMC Cancer ; 16: 499, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27430336

RESUMO

BACKGROUND: Patients with advanced stage non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) often experience multidimensional impairments, affecting quality of life during their course of disease. In lung cancer patients with operable disease, several studies have shown that exercise has a positive impact on quality of life and physical functioning. There is limited evidence regarding efficacy for advanced lung cancer patients undergoing palliative treatment. Therefore, the POSITIVE study aims to evaluate the benefit of a 24-week exercise intervention during palliative treatment in a randomized controlled setting. METHODS/DESIGN: The POSITIVE study is a randomized, controlled trial investigating the effects of a 24-week exercise intervention during palliative treatment on quality of life, physical performance and immune function in advanced, non-operable lung cancer patients. 250 patients will be recruited in the Clinic for Thoracic Diseases in Heidelberg, enrolment begun in November 2013. Main inclusion criterion is histologically confirmed NSCLC (stage IIIa, IIIb, IV) or SCLC (Limited Disease-SCLC, Extensive Disease-SCLC) not amenable to surgery. Patients are randomized into two groups. Both groups receive weekly care management phone calls (CMPCs) with the goal to assess symptoms and side effects. Additionally, one group receives a combined resistance and endurance training (3x/week). Primary endpoints are quality of life assessed by the Functional Assessment of Cancer Therapy for patients with lung cancer (FACT-L, subcategory Physical Well-Being) and General Fatigue measured by the Multidimensional Fatigue Inventory (MFI-20). Secondary endpoints are physical performance (maximal voluntary isometric contraction, 6-min walk distance), psychosocial (depression and anxiety) and immunological parameters and overall survival. DISCUSSION: The aim of the POSITIVE trial is the evaluation of effects of a 24-week structured and guided exercise intervention during palliative treatment stages. Analysis of various outcomes (such as quality of life, physical performance, self-efficacy, psychosocial and immunological parameters) will contribute to a better understanding of the potential of exercise in advanced lung cancer patients. In contrast to other studies with advanced oncological patients the POSITIVE trial provides weekly phone calls to support patients both in the intervention and control group and to segregate the impact of physical activity on quality of life. TRIAL REGISTRATION: ClinicalTrials.gov NCT02055508 (Date: December 12, 2013).


Assuntos
Terapia por Exercício/métodos , Exercício Físico , Neoplasias Pulmonares/terapia , Cuidados Paliativos/métodos , Adulto , Idoso , Feminino , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Aptidão Física/fisiologia , Qualidade de Vida , Treinamento Resistido , Inquéritos e Questionários
3.
J Biol Chem ; 287(41): 34484-93, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22904327

RESUMO

The terminal enzyme of the respiratory chain, cytochrome c oxidase, consists of a hydrophobic reaction center formed by three mitochondrially encoded subunits with which 9-10 nuclear encoded subunits are associated. The three core subunits are synthesized on mitochondrial ribosomes and inserted into the inner membrane in a co-translational reaction facilitated by the Oxa1 insertase. Oxa1 consists of an N-terminal insertase domain and a C-terminal ribosome-binding region. Mutants lacking the C-terminal region show specific defects in co-translational insertion, suggesting that the close contact of the ribosome with the insertase promotes co-translational insertion of nascent chains. In this study, we inserted flexible linkers of 100 or 200 amino acid residues between the insertase domain and ribosome-binding region of Oxa1 of Saccharomyces cerevisiae. In the absence of the ribosome receptor Mba1, these linkers caused a length-dependent decrease in mitochondrial respiratory activity caused by diminished levels of cytochrome c oxidase. Interestingly, considerable amounts of mitochondrial translation products were still integrated into the inner membrane in these linker mutants. However, they showed severe defects in later stages of the biogenesis process, presumably during assembly into functional complexes. Our observations suggest that the close proximity of Oxa1 to ribosomes is not only used to improve membrane insertion but is also critical for the productive assembly of the subunits of the cytochrome c oxidase. This points to a role for Oxa1 in the spatial coordination of the ribosome with assembly factors that are critical for enzyme biogenesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nat Commun ; 10(1): 4877, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653831

RESUMO

The interaction between the mammalian host and its resident gut microbiota is known to license adaptive immune responses. Nutritional constituents strongly influence composition and functional properties of the intestinal microbial communities. Here, we report that omission of a single essential amino acid - tryptophan - from the diet abrogates CNS autoimmunity in a mouse model of multiple sclerosis. Dietary tryptophan restriction results in impaired encephalitogenic T cell responses and is accompanied by a mild intestinal inflammatory response and a profound phenotypic shift of gut microbiota. Protective effects of dietary tryptophan restriction are abrogated in germ-free mice, but are independent of canonical host sensors of intracellular tryptophan metabolites. We conclude that dietary tryptophan restriction alters metabolic properties of gut microbiota, which in turn have an impact on encephalitogenic T cell responses. This link between gut microbiota, dietary tryptophan and adaptive immunity may help to develop therapeutic strategies for protection from autoimmune neuroinflammation.


Assuntos
Autoimunidade/imunologia , Dieta , Encefalomielite Autoimune Experimental/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T/imunologia , Triptofano , Animais , Proteínas Alimentares , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/microbiologia , Microbioma Gastrointestinal/genética , Camundongos , Esclerose Múltipla , RNA Ribossômico 16S/genética
5.
Oncoimmunology ; 7(12): e1486353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524887

RESUMO

Tryptophan (Trp) metabolism is an important target in immuno-oncology as it represents a powerful immunosuppressive mechanism hijacked by tumors for protection against immune destruction. However, it remains unclear how tumor cells can proliferate while degrading the essential amino acid Trp. Trp is incorporated into proteins after it is attached to its tRNA by tryptophanyl-tRNA synthestases. As the tryptophanyl-tRNA synthestases compete for Trp with the Trp-catabolizing enzymes, the balance between these enzymes will determine whether Trp is used for protein synthesis or is degraded. In human cancers expression of the Trp-degrading enzymes indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan-2,3-dioxygenase (TDO2) was positively associated with the expression of the tryptophanyl-tRNA synthestase WARS. One mechanism underlying the association between IDO1 and WARS identified in this study is their joint induction by IFNγ released from tumor-infiltrating T cells. Moreover, we show here that IDO1- and TDO2-mediated Trp deprivation upregulates WARS expression by activating the general control non-derepressible-2 (GCN2) kinase, leading to phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) and induction of activating transcription factor 4 (ATF4). Trp deprivation induced cytoplasmic WARS expression but did not increase nuclear or extracellular WARS levels. GCN2 protected the cells against the effects of Trp starvation and enabled them to quickly make use of Trp for proliferation once it was replenished. Computational modeling of Trp metabolism revealed that Trp deficiency shifted Trp flux towards WARS and protein synthesis. Our data therefore suggest that the upregulation of WARS via IFNγ and/or GCN2-peIF2α-ATF4 signaling protects Trp-degrading cancer cells from excessive intracellular Trp depletion.

6.
Oncoimmunology ; 6(7): e1328340, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811969

RESUMO

Mutation-specific vaccines have become increasingly important in glioma immunotherapy; however, shared neoepitopes are rare. For diffuse gliomas, a driver mutation in the gene for isocitrate dehydrogenase type-1 has been shown to produce an immunogenic epitope currently targeted in clinical trials. For highly aggressive midline gliomas, a recurrent point mutation in the histone-3 gene (H3F3A) causes an amino acid change from lysine to methionine at position 27 (K27M). Here, we demonstrate that a peptide vaccine against K27M-mutant histone-3 is capable of inducing effective, mutation-specific, cytotoxic T-cell- and T-helper-1-cell-mediated immune responses in a major histocompatibility complex (MHC)-humanized mouse model. By proving an immunologically effective presentation of the driver mutation H3K27M on MHC class II in human H3K27M-mutant gliomas, our data provide a basis for the further clinical development of vaccine-based or cell-based immunotherapeutic approaches targeting H3K27M.

7.
J Neuroimmunol ; 297: 117-26, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397084

RESUMO

Relapsing-remitting multiple sclerosis (MS)(2) is characterized by phases of acute neuroinflammation followed by spontaneous remission. Termination of inflammation is accompanied by an influx of regulatory T cells (Tregs).(3) The molecular mechanisms responsible for directing Tregs into the inflamed CNS tissue, however, are incompletely understood. In an MS mouse model we show that the stress kinase general control non-derepressible 2 (GCN2),(4) expressed in T cells, contributes to the resolution of autoimmune neuroinflammation. Failure to recover from acute inflammation was associated with reduced frequencies of CNS-infiltrating Tregs. GCN2 deficient Tregs displayed impaired migration to a CCL2 gradient. These data suggest an important contribution of the T cell stress response to the resolution of autoimmune neuroinflammation.


Assuntos
Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T Reguladores/fisiologia , Animais , Anexina A5/metabolismo , Astrócitos/metabolismo , Encéfalo/citologia , Movimento Celular/fisiologia , Citocinas/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/fisiologia , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/toxicidade , Proteínas Serina-Treonina Quinases/genética , Estatísticas não Paramétricas , Linfócitos T Reguladores/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA